

ARIZONA
ARIZONA STATE ROUTE 69
STATE ROUTE 69

Draft Final Report

Contents

1. Introduction	1
Study Overview	2
Guiding Principles	4
Study Process	5
Summary of Key Recommendations.....	6
2. SR 69 Corridor Today	8
Existing Conditions Snapshot	9
How the Corridor is Used Today	13
Roadway Characteristics.....	15
Traffic and Congestion Conditions.....	21
Safety Concerns.....	28
Summary of Corridor Needs.....	30
3. Summary of Community Engagement	31
How We Engaged the Community	32
What We Heard	33

4. Evaluation of Potential Improvements.....	35
Overview of the Evaluation Process	36
Improvement Alternatives	37
5. Preferred Improvement Recommendations.....	46
Phasing Improvements.....	47
Short-Term Recommendations	47
Mid-Term Recommendations	49
Long-Term Recommendations	51
5. Implementation Recommendations	53
Implementation Considerations.....	54
Funding Opportunities.....	55

Appendices

- Appendix A. Origin Destination Analysis
- Appendix B. Preferred Alternative Design Concept
- Appendix C. Preferred Alternative Environmental Review
- Appendix D. Traffic Operations Analysis Data Inputs and Outputs

PAGE INTENTIONALLY BLANK.

1. Introduction

Study Overview

State Route 69 (SR 69) is **more than pavement and lanes—it is the spine of Central Yavapai County's transportation system**. Every day, it connects people to jobs, healthcare, shopping, schools, and recreation, while also carrying freight vital to Arizona's economy. Its dual role as both a community connector and regional freight corridor makes SR 69 one of the most critical corridors in northern Arizona. With the region experiencing rapid growth and changing travel demands, the Central Yavapai Metropolitan Planning Organization (CYMPO) launched the SR 69 Corridor Master Plan (CMP) to chart a path forward. The CMP is a blueprint for the future – an action-oriented plan designed to guide strategic investments, improve safety, and keep the corridor reliable and accessible for everyone who depends on it.

SR 69 Corridor Study Area

The study focuses on a 18-mile stretch of SR 69 from Dewey-Humboldt to SR 89 in Prescott. While SR 69 is a regional route, it also functions as the main street for daily life in Prescott, Prescott Valley, and Dewey-Humboldt, linking neighborhoods, businesses, schools, and major destinations.

To capture the unique character and needs of each portion of the corridor, the CMP divides SR 69 into nine distinct segments (see Table 1.1). This segmentation not only improves the precision of technical analysis but also ensures that solutions can be tailored to the unique needs, opportunities, and challenges within each segment of the corridor. Together, these insights will shape a comprehensive strategy to meet today's demands and prepare for tomorrow's growth.

Table 1.1. Study Area Corridor Segments

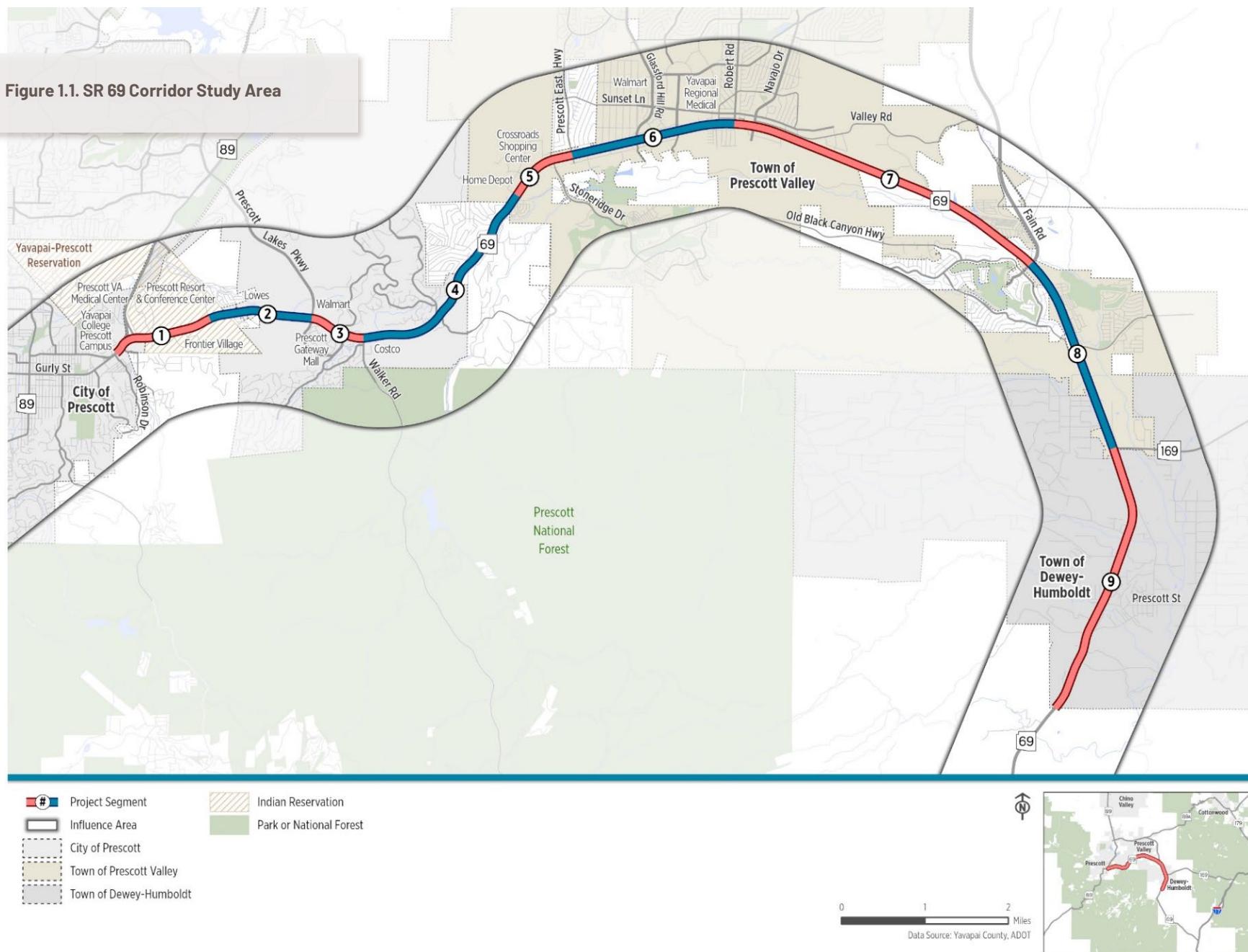
#	Segment
1	SR 89 to Yavpe Connector
2	Yavpe Connector to Prescott Lakes Parkway
3	Prescott Lakes Parkway to Walker Road
4	Walker Road to Town of Prescott Valley Western Boundary
5	Town of Prescott Valley Western Boundary to Prescott East Highway
6	Prescott East Highway to Robert Road
7	Robert Road to Fain Road
8	Fain Road to SR 169
9	SR 169 to Town of Dewey-Humboldt Southern Boundary

WHY THIS PLAN MATTERS

Growth Is Changing How We Travel. Prescott Valley and surrounding communities are experiencing rapid development, driving more trips and creating new demands on SR 69.

Safety Concerns Are Rising.

Crash patterns and gaps in multimodal facilities highlight an urgent need for proactive safety upgrades.


Freight Reliability Is Critical. As a designated freight corridor, SR 69 must continue to support goods movement vital to the region's economy.

Agencies Need a Cohesive Vision.

ADOT, Prescott Valley, Dewey-Humboldt, Yavapai County, Prescott, and CYMPO need a unified game plan to coordinate investments and deliver improvements that work for everyone.

Figure 1.1. SR 69 Corridor Study Area

Guiding Principles

The SR 69 Corridor Master Plan is built on a clear set of guiding principles that shape every recommendation. These principles ensure the plan is visionary, practical, and action oriented.

SAFETY FIRST

Creating a safer corridor is non-negotiable. The Plan should prioritize strategies that reduce crash risk, save lives, and protect vulnerable users – from drivers and truck operators to people walking, biking, or taking transit. Every improvement should be evaluated through the lens of safety.

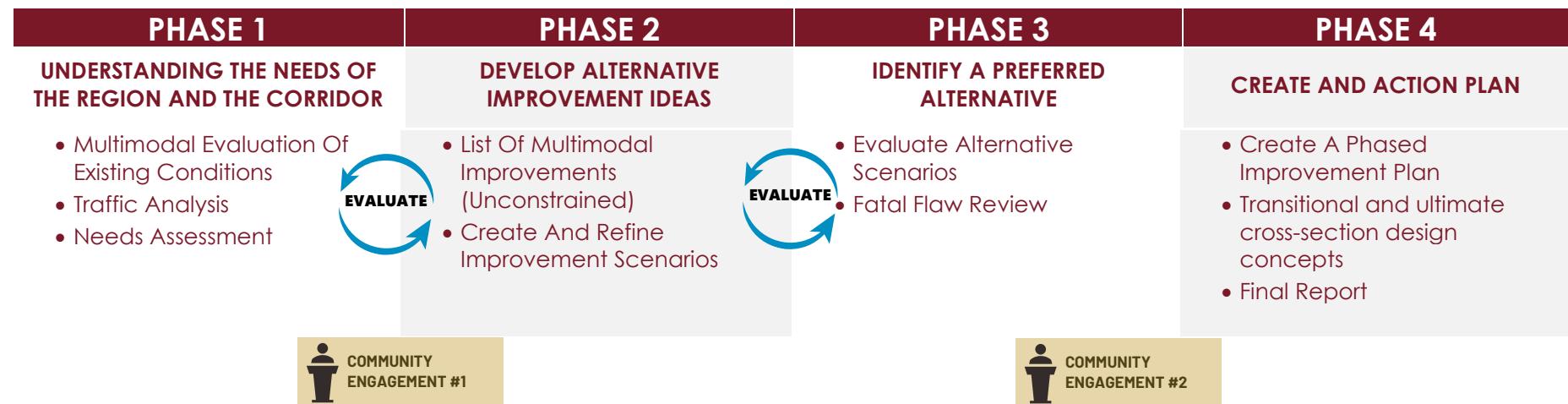
RELIABLE MOBILITY & ACCESS

SR 69 must move people and goods efficiently. The plan should emphasize smooth, reliable travel for commuters, freight carriers, and transit riders by addressing congestion hot spots, improving traffic flow, and safeguarding freight reliability along this critical regional connector.

TECHNOLOGY ENHANCEMENTS

The Plan should explore opportunities to integrate emerging technologies – such as advanced traffic management, adaptive signal systems, and intelligent transportation solutions – to improve safety, efficiency, and reliability along the corridor.

IMPLEMENTATION


This is a plan designed to be used – not shelved. The Plan should provide a phased, fundable strategy aligned with CYMPO, ADOT, and local priorities. Recommendations should be structured to be practical and adaptable, so agencies can move from planning to action with confidence.

Study Process

Developing the SR 69 Corridor Master Plan was a collaborative and technical effort grounded in partnership among local jurisdictions, regional agencies, community stakeholders, and the public. The process was structured to build a shared understanding of existing conditions, define needs, and identify a cohesive, fiscally responsible set of corridor improvements.

The study followed four key stages that together formed a clear roadmap for implementation. It started with listening and learning—engaging corridor communities and documenting existing conditions to establish a data-driven foundation. Building on that foundation, scenarios for improvement were developed to address identified needs and reflect input from agencies and the public. Through evaluation and discussion, alternatives were refined to identify a preferred concept that balances safety, mobility, and community goals. Finally, the Plan culminated in an implementation strategy that defines next steps, responsibilities, and funding pathways to move improvements from concept to construction.

Throughout each stage, the study emphasized coordination, transparency, and consensus—ensuring the resulting plan is both realistic and achievable.

Summary of Key Recommendations

Short-Term Recommendations

ID	Location	Improvement*	Purpose	Cost**
1a	SR 69 / Prescott Lakes Parkway	Add 2 nd WB Right-Turn Lane	Reduce right-turn queueing and improve intersection capacity. Preserve Walmart's exclusive right-turn lane.	\$14.25M
1b	SR 69 / Prescott Lakes Parkway	Add 2 nd WB Left-Turn Lane	Improve left-turn storage and reduce spillback into through lanes	
1c	SR 69 / Old Black Canyon Hwy	Thru-Cut Intersection	Remove side-street through movements to reduce signal phases and delay	
1d	SR 69 / Ramada Drive	Continuous Green-T Intersection	Channelize left turns, reduce conflict points, and increase through green time	
1e	SR 69 / Diamond Drive	Continuous Green-T Intersection	Same as above - safety and delay reduction	
1f	SR 69 / Glassford Hill Road	Extend EB Left-Turn Storage	Prevent left-turn queues from blocking through lanes	
1g	SR 69 / Mendecino Drive	Install New Traffic Signal	Improve safety and provide controlled access	
1h	SR 69 / Stoneridge Drive	Add 2 nd EB Left-Turn Lane	Increase capacity for eastbound left-turning vehicles	
2a	Lee Blvd to Walker Road	Add 3 rd WB Travel Lane	Add capacity and reduce westbound congestion	\$5M
2b	Prescott Lake Parkway to Lee Boulevard	Raised Median	Improve access management and corridor safety	
2c	SR 69/Gateway Road	Install Continuous Green T	Improve intersection efficiency and reduce delay	
3a	Sundog to Great Western Drive	Add Multi-Use Path on Northside	Fill gaps in pedestrian and bicycle network	\$1.25M
3b	Sundog to Stoneridge	Add Multi-Use Path on Southside	Fill gaps in pedestrian and bicycle network	
7	One Hope Christian Church Driveway to Main Street	Add Multi-Use Path on Northside	Improve multimodal connectivity	\$750K
TOTAL COST				\$21.25M

* Directional references in this table are based on cardinal directions.

** Cost Assumptions: No bridges/major structures, minimal walls, minimal drainage improvements, and minimal earthwork. Does not include costs for new r/w or utility relocations. Costs are representative of today's dollars.

Mid-Term Recommendations

ID	Location	Improvement*	Purpose	Cost***
4a	Prescott East Hwy to Glassford Hill Road	Add EB Third Lane	Increase corridor capacity and reduce travel times	\$39.75M
4b	Glassford Hill Road to Truwood Drive	Add EB and WB Third Lanes	Add bidirectional capacity in highest-delay segment	
4c**	Stoneridge Drive to Navajo Road	Construct Median	Improve safety through access control	
4d	Stoneridge Drive to Navajo Road	Add Multi-Use Path on Southside	Provide safe pedestrian/bike facilities	
4e	Navajo Drive to Truwood Drive	Add Multi-Use Path (both sides)	Complete multimodal network	
5a	Walker Road to Sundog Ranch Road	Signal Retiming & Optimization	Maximize benefits of widening and medians	\$33M
5b	Walker Road to Old Black Canyon Hwy	Driveway Consolidation / Turn Restrictions	Support median function and improve safety	
5c	Walker Road to Sundog Ranch Road	Add EB Third Lane	Increase corridor capacity and reduce travel times	
TOTAL COST				\$72.75M

* Directional references in this table are based on cardinal directions.

**This improvement is being implemented as a FY27/28 HSIP project.

***Cost Assumptions: No bridges/major structures, minimal walls, minimal drainage improvements, and minimal earthwork. Does not include costs for new r/w or utility relocations. Costs are representative of today's dollars.

Long-Term Recommendations

ID	Location	Improvement*	Purpose	Cost**
6a	Truwood Drive to Fain Road	Add EB and WB Third Lanes	Complete corridor capacity build-out	\$44.25M
6b	Enterprise Parkway to Fain Road	Construct Median	Enhance safety and manage access	
6c	Truwood Drive to Fain Road	Complete Multi-Use Path on Northside	Finalize continuous pedestrian/bike connection	
8	Fain Road to One Hope Christian Church Driveway	Complete Multi-Use Path on Northside	Fill final gap for multimodal continuity	\$6.75M
9	Frontier Village to Prescott Lakes Parkway	Add Multi-Use Path on Southside	Extend multimodal facilities to serve key destinations	\$2.75M
TOTAL COST				\$53.75M

* Directional references in this table are based on cardinal directions.

** Cost Assumptions: No bridges/major structures, minimal walls, minimal drainage improvements, and minimal earthwork. Does not include costs for new r/w or utility relocations. Costs are representative of today's dollars.

2. SR 69 Corridor Today

Existing Conditions Snapshot

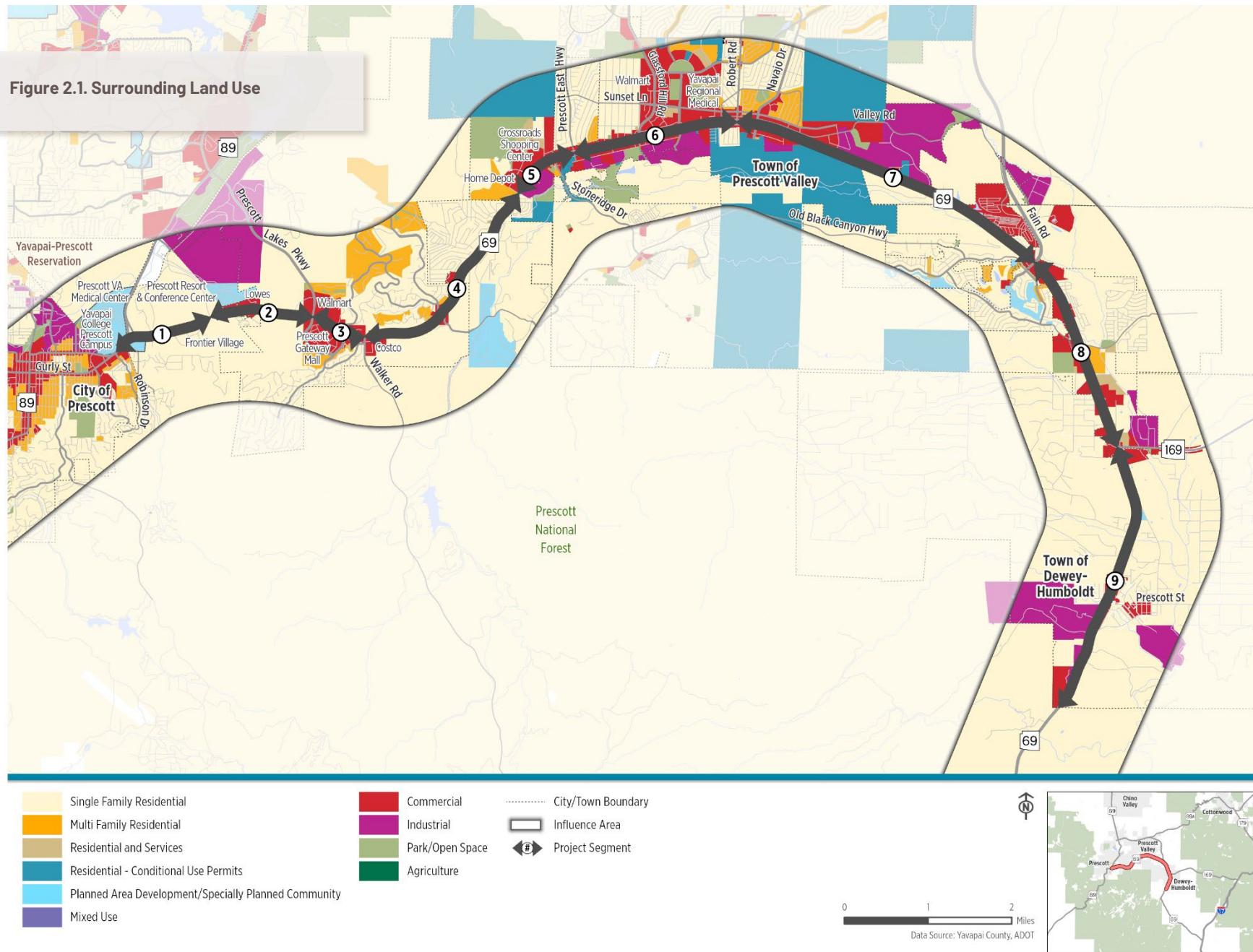
Before charting a path forward, it's essential to understand what SR 69 looks like today and how it performs on a daily basis. This snapshot paints a picture of the corridor's current reality - how surrounding land uses shape demand, how community demographics influence travel needs, and how roadway conditions, traffic patterns, and safety trends impact the experience of every traveler. **Together, these insights reveal where the corridor is working, where it is under pressure, and where targeted investments can make the greatest difference.**

Surrounding Land Use

Land use along SR 69 is diverse and directly influences how the corridor functions. SR 69 supports a dynamic mix of residential, commercial, and industrial activity, with development patterns shifting from west to east:

Residential: Neighborhoods cluster along the corridor generate local trips and relying on SR 69 for regional access.

Commercial: Prescott Valley and Prescott feature concentrated shopping centers, big-box retail, and restaurants that create frequent access points and short local trips.


Industrial: Industrial parcels located near Dewey-Humboldt and south of the corridor in Prescott Valley contribute to heavy truck activity, adding to freight pressures along SR 69.

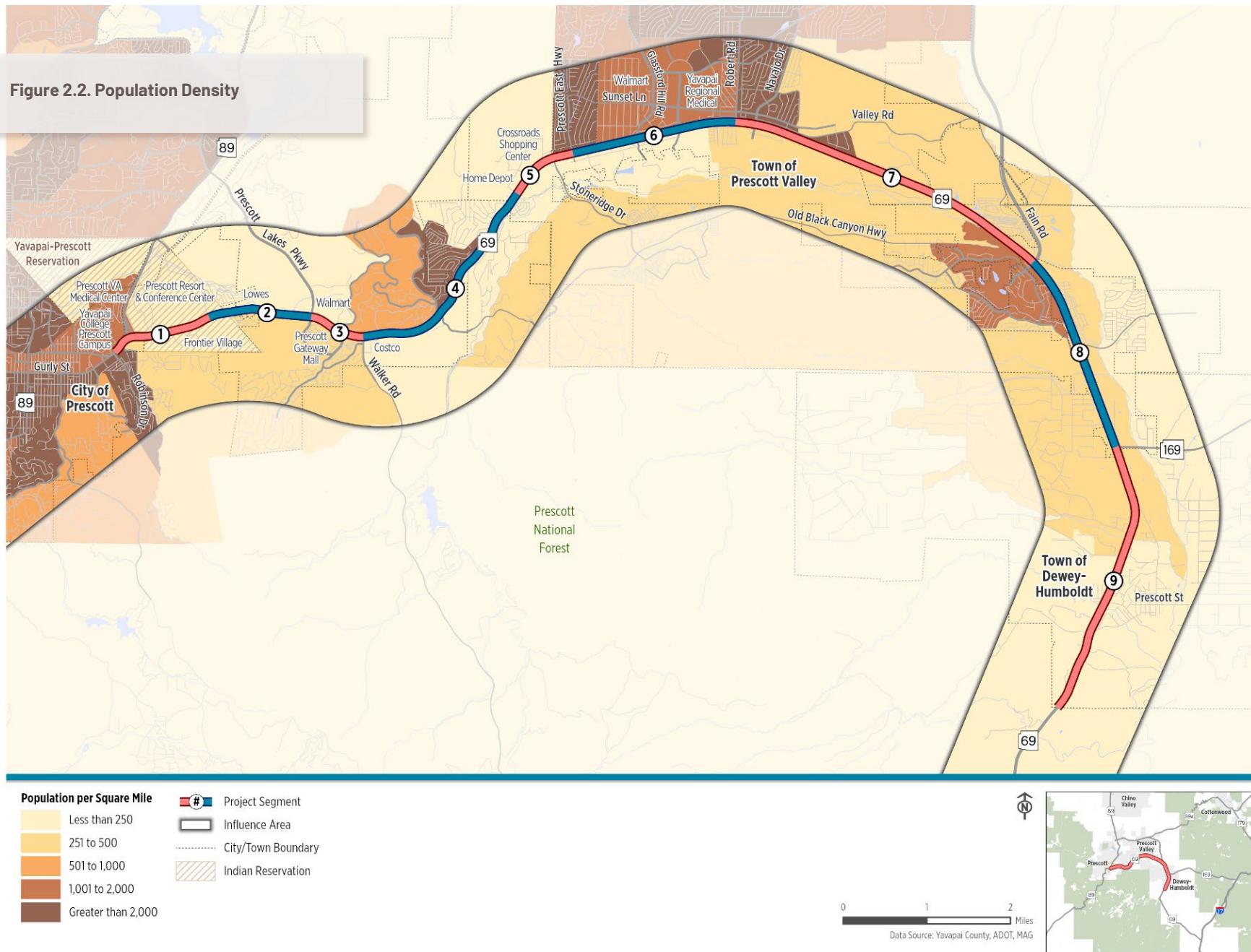
Major Destinations

Several regional anchors rely on SR 69 for direct access, reinforcing its importance beyond a simple commuter route:

- **Healthcare:** Yavapai Regional Medical Center and the VA Medical Center draw trips from across the county.
- **Education:** Yavapai College campuses generate student and staff travel throughout the day.
- **Commercial & Retail:** Pine Ridge Marketplace, Frontier Village, Crossroads shopping area, big-box retail (Costco, Lowes, Home Depot, Walmart, Target, etc.), and the Prescott Valley Entertainment District serve as major shopping and entertainment hubs.
- **Civic & Recreation:** Civic centers, parks, and recreation facilities in Prescott Valley and Prescott contribute steady trip volumes, especially during evenings and weekends.

These destinations create recurring surges in demand, influencing traffic peaks, access needs, and safety considerations.

Demographics


SR 69 must work for a wide range of users – retirees, students, commuters, and freight operators. Demographic trends show:

- **Population Centers:** Prescott and Prescott Valley together account for the majority of the corridor's 95,000 residents, with the highest densities located in Prescott Valley and the Diamond Valley neighborhood of east Prescott.
- **An Aging Population:** A significant share of residents are age 65 and older, particularly in Yavapai Hills, near Prescott Golf Club, and other retirement-oriented neighborhoods. This trend increases demand for safe roadway designs, slower speeds in key areas, and accessible multimodal options.
- **Youth & Families:** A considerable portion of residents are under the age of 18, concentrated in family-oriented neighborhoods in Prescott Valley and east Prescott. This highlights the need for safe walking and biking routes to schools, recreational facilities, and neighborhood destinations.
- **Travel to Work:** Average commute times vary significantly across the corridor, from 16 minutes in Prescott to 21 minutes in Prescott Valley and nearly 29 minutes in Dewey-Humboldt. Longer travel times, point to the importance of efficient regional connections and reliable corridor travel.
- **Transit Dependence:** Pockets of Prescott Valley and central Prescott include numerous households without vehicles and residents living below the poverty line, emphasizing the importance of reliable transit and non-driving travel options.

These demographic characteristics underscore the need for a corridor that serves a wide spectrum of travelers - from retirees and students to commuters and freight operators - while ensuring access for those without reliable private transportation.

Table 2.1. SR 69 Study Corridor Population Characteristics (2023 American Community Survey)

Demographic	City of Prescott	City of Prescott Valley	Dewey-Humboldt	Arizona
Total Population	46,744	48,048	4,428	7,268,175
Population 65 or Older	40.5%	28.5%	32.7%	18.6%
Population Under the Age of 18	11.2%	20.4%	22.0%	21.9%
Population Residing Below the Poverty Level	11.6%	12.3%	10.1%	12.8 %
Mean Travel Time to Work	16.1 minutes	20.8 minutes	28.9 minutes	-
Workers in Households with No Vehicle Available	6.1%	3.4%	3.6%	5.4%

How the Corridor is Used Today

Travel behavior along the SR 69 study corridor was analyzed using traffic counts (2022/2023) and Replica trip data from Fall 2022, providing a detailed picture of how people and goods move through the corridor. The analysis covered private vehicles, commercial vehicles, taxis, and TNCs, examining both eastbound and westbound trips across nine key segments. A full summary of findings is provided in the Appendix A.

Current Travel Patterns

Prescott–Prescott Valley Connection (Segments 3–6): The heaviest travel volumes occur between East Prescott and Central Prescott Valley, with daily trips for work, shopping, and school. These flows underscore SR 69's role as the primary link between the two communities.

Other Prescott Areas Add Trips (Segments 1–2): South Prescott and Southwest Prescott generate substantial traffic, especially in the westernmost segments near Prescott. While smaller than the East Prescott–Central Prescott Valley flows, these trips still account for a meaningful share of daily corridor activity.

Through Trips to Phoenix (Segments 7–9): On the eastern end of the corridor, many trips are not local but continue south past the study area toward the Phoenix region. In some segments, through-traffic accounts for nearly half of all trips, highlighting SR 69's regional gateway function.

Balanced Patterns: Westbound and eastbound flows generally mirror each other, underscoring the bi-directional commuting and shopping trips typical of regional corridors.

What the Data Tells Us

The travel patterns along SR 69 show that the corridor plays two essential roles:

- **A Regional Connector.** SR 69 is the daily link between Prescott and Prescott Valley, carrying strong two-way flows for work, shopping, and community trips.
- **A Through Corridor.** The eastern segments serve long-distance travel, with many trips continuing south toward Phoenix and beyond.

Because SR 69 must serve both local and regional needs, planning should focus on:

- Improving **capacity and safety** where community traffic and through trips overlap.
- Ensuring **reliable connections** between Prescott and Prescott Valley.
- Expanding **multimodal options** near major retail, civic, and job centers.

Segment Highlights

Travel patterns along SR 69 vary by location, reflecting the mix of residential, commercial, and regional travel needs. The western segments near Prescott show strong daily connections to Prescott Valley and serve key destinations like shopping centers and schools. The middle segments represent the core of Prescott Valley, carrying both local access and through traffic. The eastern segments, by contrast, handle a much larger share of regional trips, with many travelers continuing on toward Dewey-Humboldt or Phoenix. Table 2.2 summarizes these differences by segment.

Table 2.2. Travel Patterns Between Segments (Replica)

#	Segment	Travel Characteristics
1	SR 89 to Yavpe Connector	
2	Yavpe Connector to Prescott Lakes Parkway	Trips are dominated by origins in West Prescott and Southwest Prescott, ending in Central Prescott Valley or South Prescott areas. These short segments carry heavy retail and institutional access demand (Gateway Mall, Yavapai College).
3	Prescott Lakes Parkway to Walker Road	
4	Walker Road to Town of Prescott Valley Western Boundary	Eastbound trips cluster from West and South Prescott, with more than half ending in Central Prescott Valley. Westbound trips show similar patterns in reverse, with Prescott Valley a major generator.
5	Town of Prescott Valley Western Boundary to Prescott East Highway	Reflects transition between Prescott and Prescott Valley. Three-quarters of eastbound trips end in Prescott Valley, emphasizing its role as a regional destination.
6	Prescott East Highway to Robert Road	Core Prescott Valley segment. Nearly half of eastbound trips end in Central Prescott Valley; westbound trips show more long-distance through traffic.
7	Robert Road to Fain Road	A critical connector out of Prescott Valley. Nearly half of eastbound trips continue through Dewey-Humboldt or south to Phoenix, while westbound trips end in Central Prescott Valley.
8	Fain Road to SR 169	Rural character with high through traffic: almost 60% of eastbound trips continue to Phoenix, while westbound trips originate largely from Dewey-Humboldt and Phoenix.
9	SR 169 to Town of Dewey-Humboldt Southern Boundary	The easternmost rural segment. Three-quarters of eastbound trips head south toward Phoenix, while westbound trips disperse across Prescott Valley and Prescott.

Roadway Characteristics

The following section outlines key roadway characteristics of the SR 69 study corridor and are based on available data as well as findings from a comprehensive aerial assessment.

Roadway Configuration

Table 2.3 illustrates right-of-way, number of lanes, and presence of a median, respectfully. Number of lanes along the corridor vary from 4 to 6 total travel lanes. As illustrated in Figure 2.3, the majority of the corridor has 4 lanes except for:

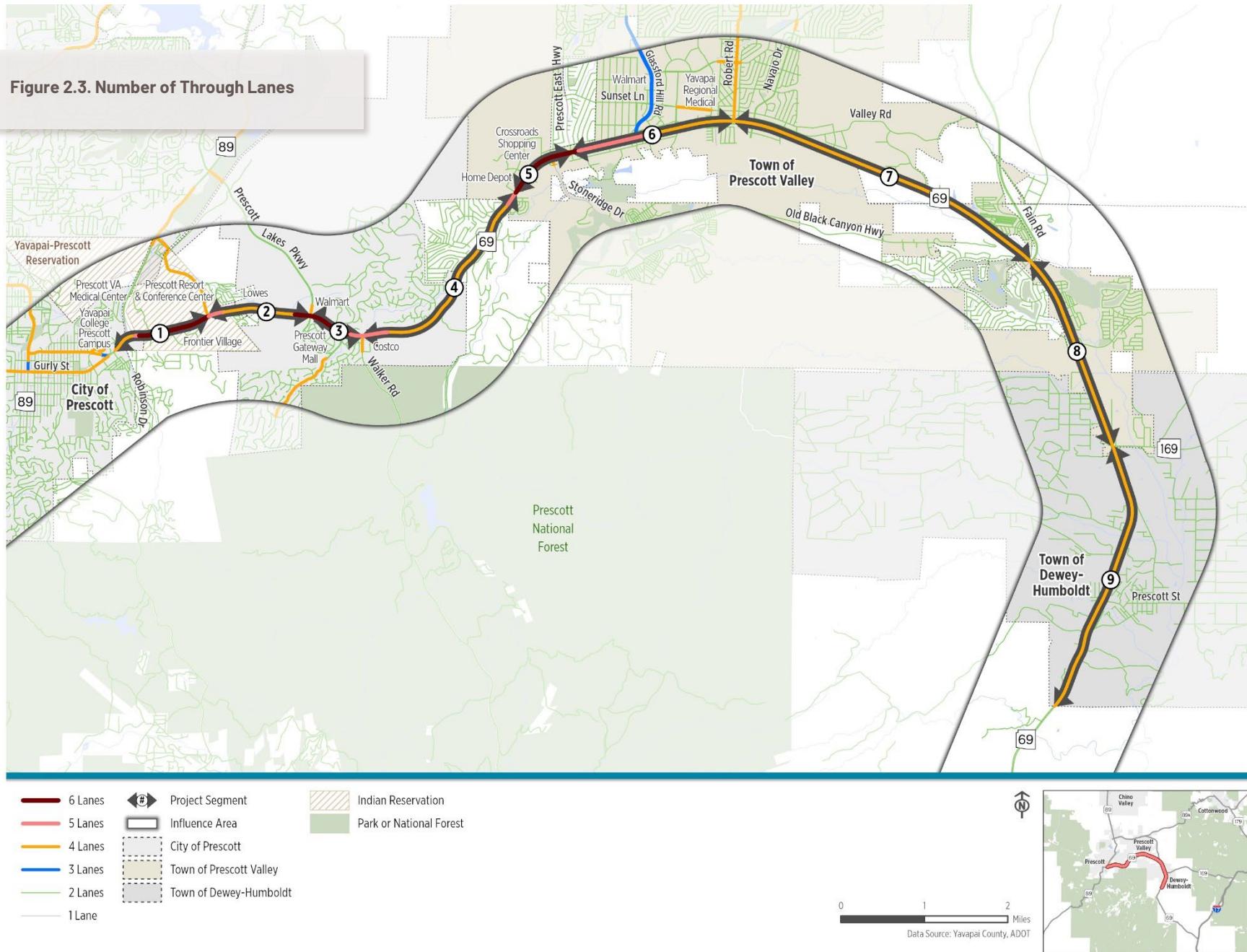
- SR 89 to East of Yavape Connector: 5 to 6 through lanes
- West of Prescott Valley Parkway to East of Walker Road: 5 to 6 through lanes
- Home Depot to East of Glassford Hill Road: 5 to 6 through lanes

Right-of-Way (ROW)

Right-of-way (ROW) widths range from 165 feet to over 400 feet. About 2.5 miles of the corridor have ROW less than 200 feet, with the narrowest segment between Lee Boulevard and Sunrise Boulevard/Old Black Canyon Highway.

Medians

Median type and width vary significantly, often shifting within short distances. For example, within 1,500 feet of Prescott Lakes Parkway, the median changes six times.



Example of Medians Along SR 69

Table 2.3. Roadway Configuration

Segment	Right-of-Way (FT)	Lanes	Median Types Present
1. Robinson Drive to Yavape Connector	200 - 400	4 to 6 lanes	Divided, Raised, None
2. Yavape Connector to Prescott Lakes Parkway	175 - 330	4 to 6 lanes	Divided, Two-Way Left-Turn Lane (TWLT), None
3. Prescott Lakes Parkway to Walker Road	190 - 345	5 to 6 lanes	Divided, None
4. Walker Road to Town of Prescott Western Boundary	165 - 290	4 to 5 lanes	Divided, Raised, None
5. Town of Prescott Western Boundary to Prescott East Highway	225 - 230	6 lanes	Raised, None
6. Prescott East Highway to Robert Road	170 - 320	4 to 5 lanes	Divided, None
7. Robert Road to Fain Road	200 - 430	4 lanes	Raised, Two-Way Left-Turn Lane (TWLT), None
8. Fain Road to SR 169	200 - 250	4 lanes	Divided, Raised, Two-Way Left-Turn Lane (TWLT), None
9. SR 169 to Town of Dewy-Humboldt Eastern Boundary	200 - 330	4 lanes	Divided, Two-Way Left-Turn Lane (TWLT), None

Source: Arizona Department of Transportation

Posted Speed Limits

The posted speed limit along the corridor ranges from 65 MPH to 40 MPH. Posted speed limits in the corridor include:

- **SR 89 to East of Heather Heights:** 35 mph
- **East of Heather Heights to East of Truwood Drive:** 45 mph
- **East of Truwood Drive to South of SR 169 :** 55 mph
- **South of SR 169 to Town of Dewey-Humboldt South Boundary:** 65 mph

Traffic Control

Figure 2.4 illustrates traffic control along the corridor. There are 27 traffic signals located along the study corridor. The traffic signals along the SR 69 corridor are actuated, and most are coordinated. The *2021 CYMPO Regional Adaptive Signal Control Technology Assessment of Need, Benefit, and Implementation Plan* included an assessment of SR 69 and determined that optimizing the signal timing plan further would provide minimal operational value. This study acknowledges that the SR 69 ITS Study is ongoing and will recommend traffic signal and communication upgrades.

Access Control


Access management enhances the flow of traffic on a corridor or roadway system by improving safety, capacity, and speed. Access management is particularly important along major arterial streets and other principal roads whose primary function is the safe and efficient movement of traffic. Effective access management programs control the location, spacing, design, and operation of intersections, private driveways, and medians to reduce the number of vehicular conflict points. Each access point along the study corridor was identified through a review of aerial mapping. Each access point was then categorized into one of the following access types:

- **Right-in/Right-out (RIRO)** – Only two traffic movements, right-in and right-out, are permitted with a side street or driveway. Intersections are typically controlled by either STOP or YIELD signs on the side street. RIRO access points along the study corridor commonly provide access to private properties.
- **Three-Quarter Intersections** – Provide RIRO and left-in access only and are generally controlled by either STOP or YIELD signs.
- **Full Access** – Allow all traffic movements on all approaches. These intersections are either STOP controlled on both side street approaches or traffic signal controlled.

Between segments 1 and 6, in the areas of greater population and traffic volume, there are more restrictive RIRO access control measures to support safety, while segments 7 to 9 have primarily three-quarter access control.

Figure 2.4. Traffic and Access Control

Shoulder and Structure Conditions

Roadside shoulders serve multiple functions: providing space for disabled vehicles, room for emergency response, and a buffer for bicyclists and pedestrians. Conditions along SR 69 vary widely:

- Some sections have no shoulder or are limited to curb and gutter.
- The narrowest or missing shoulders are generally found through Prescott and Prescott Valley.
- In other areas, particularly in Segment 4, shoulders are more consistent, typically 3 feet or wider, with some sections exceeding 8 feet.

Bridges and culverts are generally in fair structural condition but show signs of aging. Limited widths at some crossings create pinch points for vehicles and leave little room for pedestrians or bicycles. These conditions reduce the corridor's ability to support safe multimodal travel.

Multimodal Facilities

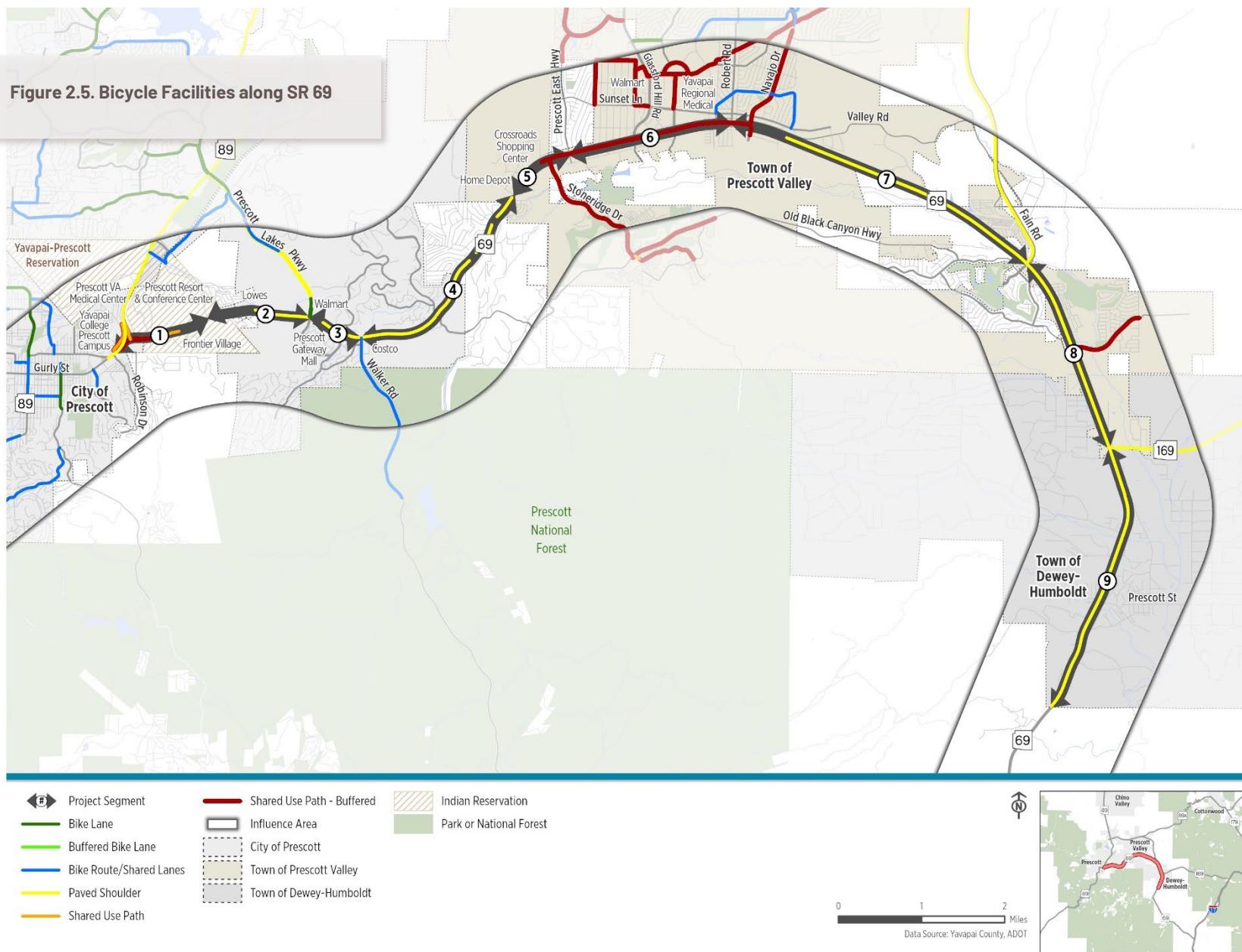
In addition to serving vehicles, the SR 69 corridor plays an important role for people walking, bicycling, and using transit. These modes are vital for providing travel options, connecting communities, and supporting regional mobility. However, multimodal facilities along the corridor are inconsistent, and gaps in the network limit safe and convenient non-auto travel.

Pedestrian Facilities

Sidewalk coverage is present in more urbanized portions of Prescott and Prescott Valley but becomes limited or nonexistent in rural stretches. Where sidewalks exist, widths and conditions vary, and gaps in the network create challenges for continuous walking trips.

Bicycle Facilities

Bicycle infrastructure is minimal. The corridor includes only short stretches of on-street bike lanes and paved shoulders in select areas, leaving most of the corridor uncomfortable and unsafe for cyclists. Narrow bridges and high-speed segments add to the challenges for bicycle travel.



Transit Service

Transit service is provided by Yavapai Regional Transit and Mountain Line, connecting downtown Prescott, Prescott Valley, and nearby communities. Service frequencies are limited, and many bus stops are basic, with few shelters or passenger amenities.

Figure 2.5. Bicycle Facilities along SR 69

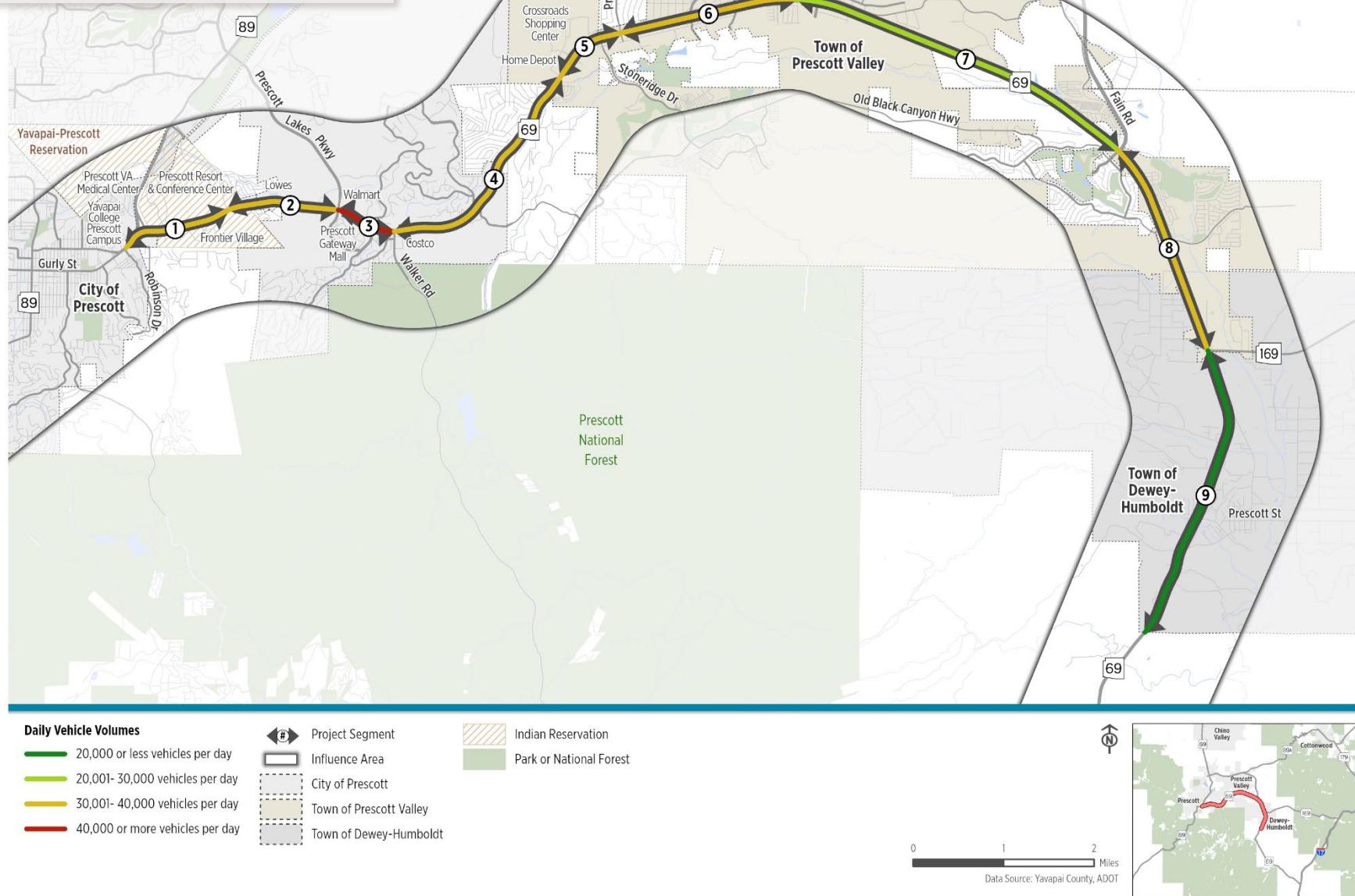
Traffic and Congestion Conditions

Understanding traffic volumes and congestion levels is essential for evaluating how SR 69 functions today and for identifying where targeted improvements can provide the greatest benefit. This section summarizes available data on traffic volumes, level of service (LOS), and intersection performance along the corridor.

Traffic Volumes and Patterns

Traffic counts were compiled from ADOT's Transportation Data Management System (TDMS) and Replica trip data, supplemented by turning movement counts from CYMPO's 2021 Adaptive Signal Control Technology Assessment. Forty-eight-hour counts and updated 2023 turning movement counts were obtained and used at key intersections. Key observations from the existing volume data include:

- **Highest Volumes in Segment 3:** Between Prescott Lakes Parkway and Walker Road, SR 69 carries the heaviest volumes - exceeding 3,500 vehicles during peak periods in both directions.
- **West Side of Corridor is Busiest:** Segments 1-4 regularly carry 30,000+ vehicles per day, reflecting the strong Prescott-Prescott Valley connection.
- **Lower Volumes on the East End:** Segment 9 (Dewey-Humboldt area) experiences the lowest daily volumes, generally below 20,000 vehicles per day.


Table 2.4. Existing Traffic Conditions for the AM, Midday and PM Peak Hours

Segment	Eastbound Volume			Westbound Volume		
	AM	MD	PM	AM	MD	PM
1. Robinson Drive to Yavpe Connector	1224	1459	1414	1221	1502	1511
2. Yavpe Connector to Prescott Lakes Parkway	1268	1454	1374	1101	1543	1582
3. Prescott Lakes Parkway to Walker Road	1431	1568	1551	1371	2092	2132
4. Walker Road to Town of Prescott Western Boundary	886	1559	1708	1198	1504	1419
5. Town of Prescott Western Boundary to Prescott East Highway	958	1621	1827	1294	1514	1542
6. Prescott East Highway to Robert Road	883	1292	1439	1062	1146	1149
7. Robert Road to Fain Road	665	990	1170	984	1027	1087
8. Fain Road to SR 169	920	1119	1370	1134	1216	1317
9. SR 169 to Town of Dewy-Humboldt Eastern Boundary	513	580	688	612	665	634

Source: Volumes for Segments 1, 2 and 3 were obtained from the ADOT Transportation Data Management System, volumes for other segments were obtained from Replica Peak period volumes indicate the highest one hour volume during the AM (7-9 AM), Midday (12-2 PM) and PM (3:30-5:30 PM)

Figure 2.6. Existing Traffic Volumes

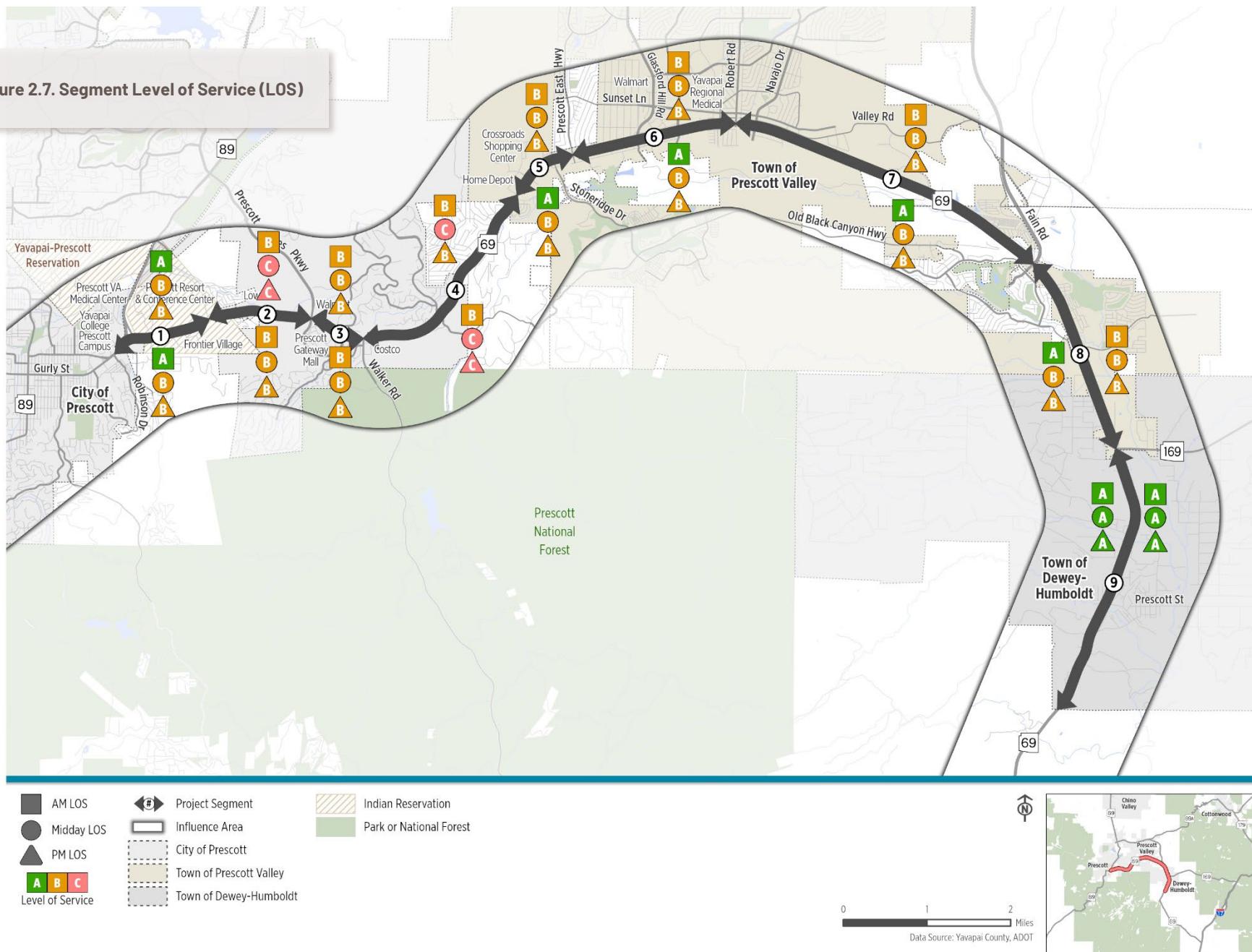
Level of Service (LOS)

Level of Service (LOS) is a term used to describe traffic operations. Level of Service can be calculated for the various elements of a street system including road segments, signalized intersections, and unsignalized intersections. The various levels of service range from LOS A (free flowing traffic) to LOS F (forced flow, or very congested). Segment-level LOS analysis shows:

- **Overall Corridor Performance:** SR 69 currently operates at LOS C or better in nearly all segments, which is considered acceptable for an urban arterial.
- **Localized Stress Points:** LOS C conditions are observed primarily on the west side of the corridor during the midday and PM peak periods, indicating approaching capacity and reduced driver comfort.
- **SR 69 is Functioning but Under Pressure:** While current LOS is generally acceptable, congestion is concentrated in the western segments and at several intersection approaches.
- **Growth Will Worsen Bottlenecks:** West-side segments near Prescott and Prescott Valley are nearing capacity; targeted investments will be needed to maintain mobility.

Segment-level traffic analysis provides a generalized view of roadway performance between intersections, typically based on traffic volumes, capacity, and travel speeds. While useful for identifying broad congestion patterns, this approach does not capture the interruptions in flow or delays that occur at signalized and unsignalized intersections. Because a large share of total travel time and driver delay occurs where vehicles slow, stop, or turn, segment-level results may not fully represent actual congestion experienced by roadway users.

Intersection operational analysis, by contrast, evaluates performance using Level of Service (LOS) based on control delay. It accounts for delay by approach and turning movement, considering factors such as signal timing, cycle length, and queueing effects. As a result, intersection-level LOS offers a more accurate representation of operating conditions and user experience at critical points along the corridor. The intersection LOS results are presented in the following section.


Intersection Operational Analysis

A Synchro analysis of 23 signalized intersections (Table 2.5) along the study corridor showed that:

- **Most Intersections Perform Well:** Overall intersection LOS is D or better under existing conditions but some individual approaches and turn movements operate at failing conditions. Detailed intersection approach and turn movement results are presented in the Appendix.
- **Isolated Problem Approaches:** Several individual movements operate at LOS E or F, indicating delay and queuing during peak hours.
 - **AM Peak:** Holiday Dr (NB), Lee Blvd (NB), Sunrise Blvd/Old Black Canyon Hwy (NB)
 - **Midday:** Heather Heights (SB), Sundog Ranch Rd (SB), Glassford Hill Rd (NB), Navajo Dr (NB)
 - **PM Peak:** Prescott Lakes Pkwy (SB – LOS F), Glassford Hill Rd (WB/NB), Diamond Dr (SB), Windsong Dr (SB)

These locations represent priority candidates for signal timing optimization, turn lane enhancements, or access management improvements.

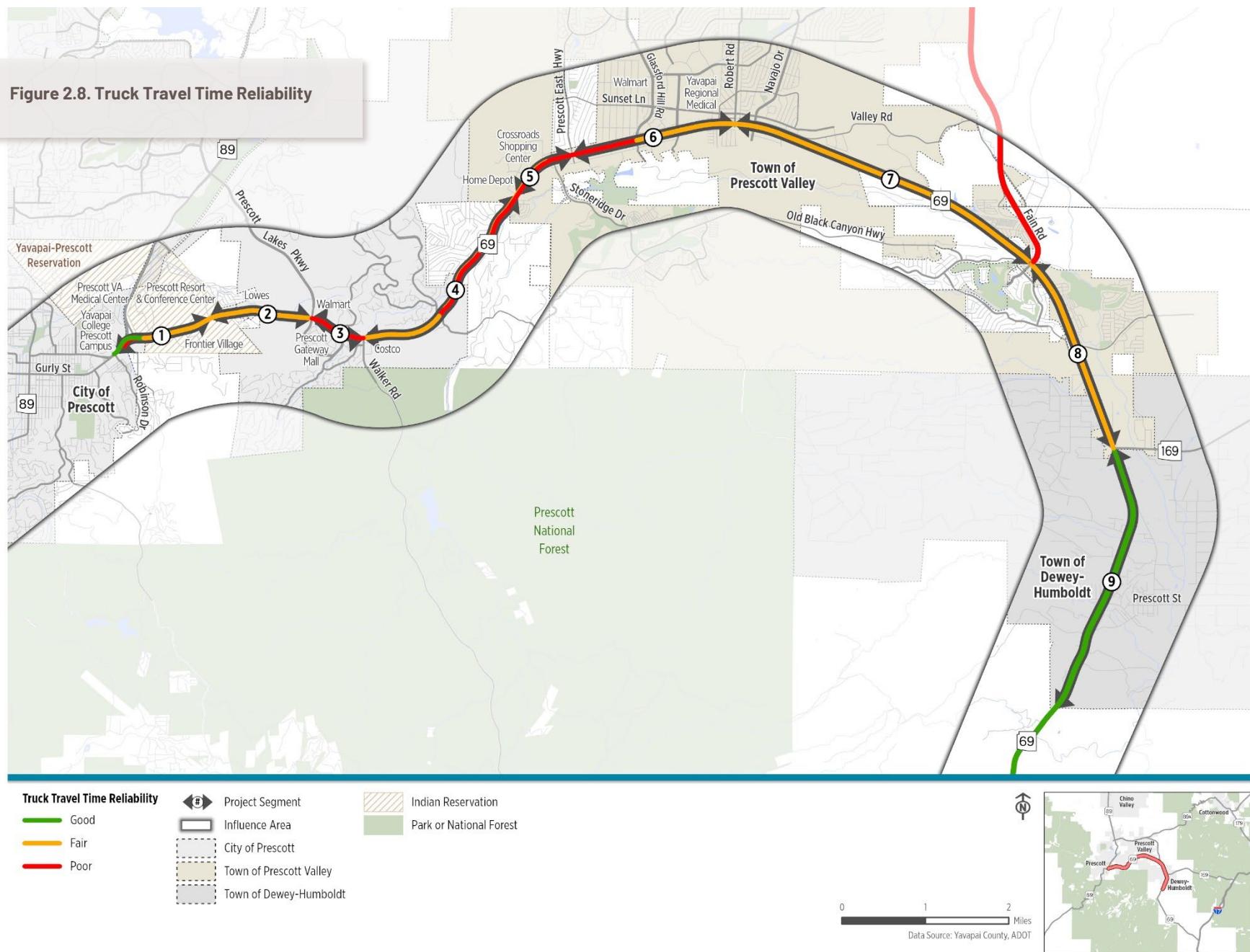
Figure 2.7. Segment Level of Service (LOS)

D

Table 2.5. Existing (2022) Intersection Traffic Operations

Intersection #	Intersections	Control Type	2022 Existing					
			AM		Mid Day		PM	
			Delay	LOS	Delay	LOS	Delay	LOS
1	Sheldon St	Signal	20.1	C	22.3	C	25.6	C
2	Heather Heights	Signal	6.2	A	8.9	A	9.0	A
3	Frontier Village Shopping Plaza DW	Signal	9.8	A	17.5	B	14.9	B
4	Yavape Connector	Signal	13.5	B	22.4	C	22.2	C
5	Holiday Dr	Signal	13.6	B	14.5	B	14.4	B
6	Prescott Lakes Pkwy	Signal	18.0	B	34.2	C	62.7	E
7	Gateway Rd	Signal	2.3	A	12.8	B	8.5	A
8	Lee Blvd	Signal	15.5	B	23.2	C	16.5	B
9	Walker Rd	Signal	11.9	B	20.0	C	13.5	B
10	Sunrise Blvd/Old Black Canyon Hwy	Signal	10.9	B	11.0	B	18.1	B
11	Robin Dr	Signal	7.1	A	3.7	A	10.2	B
12	Ramada Dr	Signal	4.6	A	4.6	A	6.4	A
13	Diamond Dr	Signal	5.7	A	4.5	A	9.0	A
14	Sundog Ranch Rd	Signal	13.3	B	37.0	D	39.3	D
15	Stoneridge Dr	Signal	21.1	C	20.6	C	22.0	C
16	Prescott E Hwy	Signal	13.6	B	16.6	B	21.3	C
17	Glassford Hill Rd	Signal	29.9	C	38.2	D	43.2	D
18	Lake Valley Rd	Signal	18.8	B	31.0	C	31.6	C
19	Windsong Dr	Signal	16.5	B	25.8	C	23.4	C
20	Robert Rd	Signal	14.9	B	24.3	C	21.2	C
21	Navajo Dr	Signal	22.0	C	21.3	C	24.7	C
22	Enterprise Pkwy	Signal	5.8	A	5.9	A	7.0	A
23	Prescott Country Club Blvd/Fain Rd	Signal	36.4	D	31.7	C	35.9	D
24	Bradshaw Mountain Rd	Signal	15.2	B	13.8	B	16.6	B
25	Kachina Pl	Signal	17.2	B	14.7	B	12.7	B
26	SR 169	Signal	24.5	C	21.5	C	26.1	C
27	Main St	Signal	14.0	B	13.4	B	10.5	B

Freight Usage


Freight movement is vital to CYMPO and Arizona's economy. SR 69, designated as a Critical Urban Freight Corridor within the National Highway Freight Network, provides essential national and regional connections between Prescott, Prescott Valley, and surrounding communities.

Truck, RV, and Freight Movement. Average Annual Daily Truck Traffic (AADTT) highlights the number of trucks using the corridor and their share of overall traffic. Truck activity along the corridor averages approximately 2,330 vehicles per day, representing about 7% of total traffic. The proportion of trucks is notably higher east of Fain Road, where they comprise roughly 12% of daily traffic, compared to about 6% west of Fain Road. Oversize trucks (14–16 feet wide) require front and rear escorts on SR 69.

Truck Travel Time Reliability (TTTR). Per the Arizona Statewide Freight Plan, freight travel is generally less reliable than passenger travel along SR 69. Segments with the poorest TTTR include Prescott Lakes Parkway to Walker Road (Segment 3) and Old Black Canyon Highway to Glassford Hill Road (Segment 6), where congestion and turning conflicts create recurring delay for freight carriers.

To better support goods movement, the corridor could benefit from improved oversize vehicle permitting, designated staging areas to reduce conflicts, and freight-focused upgrades in high-volume segments. Investments in pavement durability, roadway widening, and adaptive signal coordination would also enhance travel time reliability, especially where TTTR is consistently poor.

Figure 2.8. Truck Travel Time Reliability

Safety Concerns

A five-year crash analysis (2017-2021) of SR 69 between SR 89 and south of SR 169 reveals where the corridor is most vulnerable and which improvements will save the most lives.

Crash Overview

Total Crashes: 1,645 (99.6% vehicle-only)

People Involved: 4,696, including: 6 pedestrians and 4 bicyclists

Rear-End Crashes: 57% of all crashes (939 total)

Single-Vehicle Crashes: 14% (228 total), 43% involving animals

Road Departure Crashes: 65 total (42 right-side, 23 left-side)

Where Crashes Happen:

- Over 60% of crashes occur at or near intersections.
- Segments 1-4 have the highest overall crash density and severity
- Segment 9 has the highest share of road-departure and rollover crashes.

When & Why:

- Most crashes happen in daylight and clear weather.
- Speeding contributed to **48% of all crashes** and **17% of fatalities**.
- Fail-to-yield and red-light violations are also common factors.

Vulnerable Users

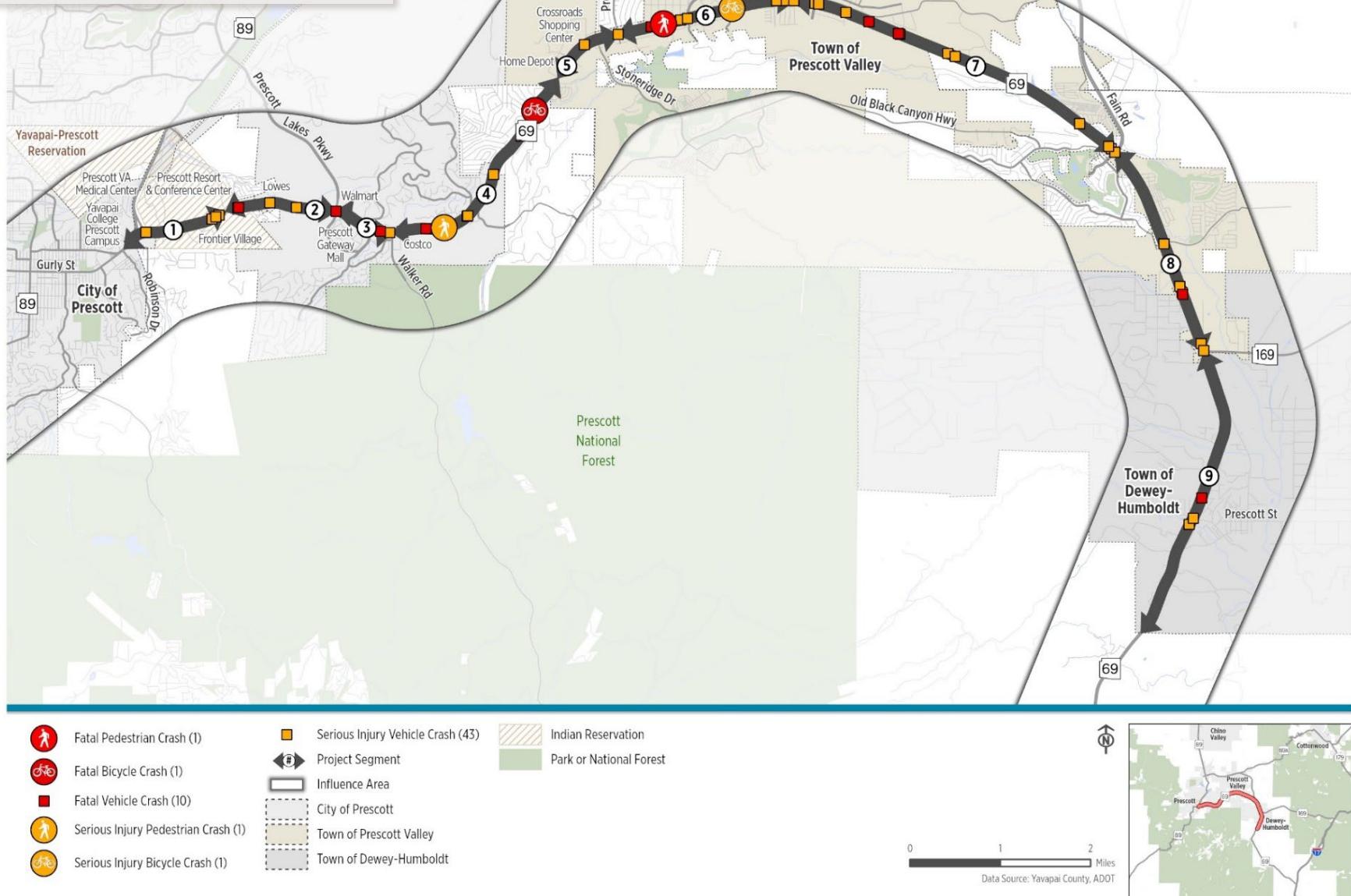
10 pedestrian/bicyclist crashes in five years – 2 fatal, 2 serious injury. All serious/fatal crashes involving walkers or cyclists occurred in **Segments 4 & 6**, where gaps in sidewalks and crossings create exposure.

Severity & Outcomes

Fatal Crashes: 12 total | **Serious Injury Crashes:** 45 total

- Fatal/serious injury clusters are concentrated near higher-density Prescott and Prescott Valley segments (1-6) and in higher-speed rural areas (Segments 7-9).
- Multi-event crashes (<15% of total) are disproportionately severe (i.e., rollovers, barrier impacts, and curbs result in serious injury.)

High-Priority Locations


- Six intersections rank at the 99th percentile for crash severity**, including Prescott Lakes Parkway, Ramada Drive, Diamond Drive, Mendecino Drive, Kachina Place, and Kloss Avenue.
- Segments 2-4 score in the **95th-100th percentile** for crash severity, indicating priority locations for near-term safety investments.

Key Takeaways

- Intersection & Rear-End Crashes Dominate:** Targeted signal timing, access management, and turn lane improvements could reduce the most common crash type.
- Speed Management Is Critical:** Segments 7-8 see the majority of fatal and serious speed-related crashes
- Protect People Walking & Biking:** Upgrading crossings, filling sidewalk/path gaps, and slowing vehicle speeds near Segments 4 & 6 will protect the most vulnerable road users.

Figure 2.9. Fatal and Serious Injury Crash Locations

Summary of Corridor Needs

The SR-69 corridor faces a mix of safety, operational, multimodal, freight, and infrastructure challenges. Addressing these needs will be essential for improving mobility, reducing crashes, and supporting community and economic growth.

Consistency Needs. The corridor lacks uniformity in roadway design, with lane configurations shifting between four and six lanes, medians alternating between raised, two-way left-turn lanes, or none at all, and shoulders and pedestrian/bike facilities appearing and disappearing. These inconsistencies create unpredictable conditions for drivers and limit safe, reliable options for all users.

Infrastructure Needs. The corridor's physical assets are generally in fair condition but require targeted upgrades. Pavement conditions are mostly Good/Fair, with localized Poor segments (notably Segment 6). Bridges and culverts are structurally sound but limited in width for multimodal use.

Operational Needs. Heavy volumes and closely spaced signals create recurring queues and spillback, reflecting limited turn-lane storage and disrupting progression. Priority actions include:

- Add/extend turn lanes at key intersections - e.g., dual lefts and/or exclusive rights with longer storage at Prescott Lakes Pkwy, Prescott East Hwy, Stoneridge Dr, and Lake Valley Rd.
- Corridor signal optimization—refresh time-of-day plans, align cycle lengths/offsets/splits and progression speeds.
- Roadside Units at Priority Intersections – at select intersections to enable CV pilot applications, enhance safety, and begin building corridor readiness.
- Video Detection Upgrades – Video detection deployment across the corridor to support comprehensive data analytics, system monitoring, and CV integration.

- Additional ITS improvements are identified in the ADOT SR69 ITS Improvement Study.

Safety Needs. Crashes are a critical issue along SR-69, particularly in urbanized segments and at key intersections. Pedestrian and bicycle safety is also a concern.

- High crash frequency and severity in Segments 1-4 and at multiple intersections (99th percentile severity).
- Speed-related crashes are concentrated in Segments 7-8.
- Roadway departure crashes are overrepresented in Segment 9.
- Pedestrian and bicycle crashes are clustered in Segments 4 and 6.

Multimodal Needs. Walking, biking, and transit options are limited and inconsistent across the corridor, reducing safe alternatives to driving.

- Sidewalks are fragmented and often narrow, with major gaps in rural segments.
- Bicycle facilities are minimal; shoulders narrow or disappear, creating unsafe conditions.
- Transit service is limited in frequency, coverage, and passenger amenities.

Freight Needs. As a Critical Urban Freight Corridor, SR-69 is essential for goods movement but faces challenges. Trucks average 7% of traffic, and travel time reliability is poorest between Prescott Lakes Parkway to Walker Road and Old Black Canyon Highway to Glassford Hill Road.

3. Summary of Community Engagement

How We Engaged the Community

Throughout the development of SR 69 Corridor Master Plan, input was gathered from community members, local agencies, and community partners to ensure the plan reflects the lived experiences, priorities, and needs of those who live, work, and travel along the corridor. This chapter highlights the voices and ideas that shaped the plan.

Project Website

The project website, www.cympo.org/sr69, served as the central hub for the SR 69 Corridor Master Plan. It provided project updates, educational materials, and multiple opportunities for public input. Visitors could access an interactive map to identify safety and mobility concerns, complete an online survey, and submit comments directly to the planning team. The website was continuously updated to reflect key milestones and upcoming engagement opportunities.

Public Survey

To better understand community perspectives on travel behavior, safety, and desired improvements along SR 69, an online survey was conducted during winter and spring 2024. The survey included questions on travel frequency, trip purposes, top concerns, and priorities for driving, walking, biking, and safety improvements. Participants could also provide location-specific feedback via an interactive mapping tool. The survey generated strong participation, with over **1,500 responses** from residents, commuters, business owners, and other stakeholders.

Spreading the Word

The project team implemented a coordinated outreach strategy to maximize participation and ensure that a wide range of perspectives were captured. Outreach efforts included:

Social Media: Posts on CYMPO's Facebook, Instagram, and member agency channels promoted the survey, interactive map, and public events to a broad audience.

Pop-Up Engagement & Workshops: The team participated in local events and convened workshops with stakeholders, business leaders, and agency partners to discuss key issues, review draft recommendations, and gather feedback.

Email Outreach: Invitations were distributed to local jurisdictions, emergency responders, freight stakeholders, and community groups to encourage participation across multiple sectors.

What We Heard

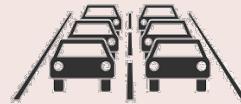
Through traditional and social media, surveys, meetings, and workshops around the region, we heard from thousands of community members. The following outlines key themes we heard.

Who We Heard From

92%
Use SR 69 to Travel
Within the Area

84%
Shop Along the
Corridor

28%
Live Along SR 69



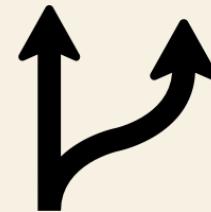
48%
Use the Corridor
Daily

65%
Are 50 Years Old
or Older

Biggest Concerns with SR 69 Today

89%
Congestion

64%
Safety


38%
Excessive
Vehicle Speeds

Desired DRIVING Improvements

Intersection Delay Reduction

80% rated "intersection delay reduction" as "important" or "very important."

Alternative Routes

80% rated "providing alternative routes" as "important" or "very important."

Desired SAFETY Improvements

Reduce Distracted Driving

82% rated as "important" or "very important."

Intersection Safety

77% rated as "important" or "very important."

Desired WALKING and BIKING Improvements

Enhanced Crosswalks and Crossing Times

60% rated as "important" or "very important."

Sidewalks and Separated Bike Facilities

50% rated as "important" or "very important."

Preferred Improvements

Driving

Operational Updates to Traffic Signals (Lower Cost)

45%

Widen SR 69 (Higher Cost)

55%

Approach

Provide an Alternative Route

51%

Widen SR 69

49%

Bike Facility

Not likely

78%

Somewhat likely

14%

Very likely

9%

4. Evaluation of Potential Improvements

Overview of the Evaluation Process

The evaluation process was designed to identify the most effective and feasible set of improvements for the SR 69 corridor. The study team applied a scenario-based approach to compare a No-Build baseline with two Build alternatives using Year 2050 traffic forecasts. This process went beyond simply modeling traffic flow – it integrated measures of corridor travel times, intersection delays, diversion to parallel routes, and qualitative factors such as safety, cost-effectiveness, and constructability.

Improvement Scenarios Evaluated

To develop a realistic and forward-looking action plan for SR 69, the study team evaluated a series of improvement scenarios representing different levels of investment, operational improvements, and multimodal accommodation. These scenarios include:

NO BUILD

Maintains the existing roadway and includes only already-funded widening (Holiday Drive to Prescott Lakes Parkway).

- No intersection improvements
- Does not address long-term traffic or safety

ALTERNATIVE 1

Widen SR 69 to six lanes from SR 89 to Fain Road.

- Adds raised medians and continuous sidewalks/shared use paths
- Includes turn lane upgrades at key intersections (i.e., Stoneridge Drive, Prescott East Highway, and Lake Valley)

ALTERNATIVE 2

Includes all Alternative 1 PLUS innovative, lower-cost intersection designs:

- **Green-T Intersections** – Where SR 69 traffic keeps moving while streamlining left turns from side streets. Evaluated at: Gateway Drive, Ramada Drive, Diamond Drive, Enterprise Parkway intersections
- **Thru-Cuts** – Means drivers on the side street wishing to cross SR 69 will need to make a right or left turn onto SR 69 and then make a U-turn at a designated location. Evaluated at: Old Black Canyon Highway intersection
- **Median U-Turns** – Replace left turns at signals with a U-turn just beyond the intersection. Evaluated at: Prescott East Highway, Windsong Drive, Navajo Drive intersections

Improvement Alternatives

Both Build alternatives emphasize a context-sensitive street design, combining added capacity with multimodal improvements. Alternative 2 represents the most comprehensive approach, incorporating innovative geometric and operational strategies to reduce conflict points, shorten signal cycles, and manage access along the corridor.

Intersection Improvement Alternatives

As previously noted, because many of SR 69's operational challenges occur at intersections, the study team evaluated several innovative intersection designs to complement corridor-wide capacity improvements:

CONTINUOUS GREEN-T INTERSECTIONS

Channelize left turns from the side street, reducing the potential for angle crashes and allowing one direction of travel on SR 69 to operate without stopping. This increases available green time for other movements and reduces overall corridor travel time.

Evaluated at: Gateway Dr, Ramada Dr, Diamond Dr, Enterprise Pkwy intersections

THRU-CUTS

Eliminate side-street through movements at the main intersection, reducing the number of signal phases, minimizing delay, and improving capacity. Thru-cuts can often be a more cost-effective solution than adding lanes.

Evaluated at: Old Black Canyon Hwy intersection

MEDIAN U-TURNS (MUTS)

Relocates left turns to median openings upstream or downstream of the main intersection. This reduces conflict points, shortens signal cycles, and enhances safety by reducing the likelihood of severe right-angle crashes.

Evaluated at: Prescott East Hwy, Windsong Dr, Navajo Dr intersections

Evaluation of Improvement Alternatives

CYMPO's Regional Travel Demand Model was used to forecast 2050 daily traffic volumes for each alternative, with proposed capacity improvements coded into the model network (Table 4.1). While these represent corridor-level outcomes, intersection operations and delay are evaluated separately in the next section. Model results show that widening SR 69 to six lanes would attract more traffic to the corridor while relieving pressure on parallel routes such as SR 89A, Fain Road, and SR 89.

Table 4.1. Segment-Level Daily Traffic Volumes For Each Alternative

SR 69 Segment	Existing	2050 No Build	2050 Build Alternative 1	2050 Build Alternative 2
Sheldon St to Heather Heights	37,000	42,000	46,000	46,000
Heather Heights to Frontier Village Shopping Plaza DW	37,000	42,000	46,000	46,000
Frontier Village Shopping Plaza DW to Yavpe Connector	37,000	42,000	46,000	46,000
Yavpe Connector to Holiday Dr	37,000	42,000	46,000	46,000
Holiday Dr to Prescott Lakes Pkwy	37,000	37,000	46,000	46,000
Prescott Lakes Pkwy to Gateway Rd	39,000	44,000	48,000	48,000
Gateway Rd to Lee Blvd	42,000	44,000	48,000	48,000
Lee Blvd to Walker Rd	40,000	44,000	52,000	52,000
Walker Rd to Sunrise Blvd/Old Black Canyon Hwy	39,000	40,000	49,000	49,000
Sunrise Blvd/Old Black Canyon Hwy to Robin Dr	36,000	37,000	51,000	51,000
Robin Dr to Ramada Dr	38,000	42,000	54,000	54,000
Ramada Dr to Diamond Dr	42,000	39,000	52,000	52,000
Diamond Dr to Sundog Ranch Rd	42,000	48,000	58,000	58,000
Sundog Ranch Rd to Stoneridge Dr	43,000	57,000	66,000	66,000
Stoneridge Dr to Prescott E Hwy	43,000	55,000	65,000	65,000
Prescott E Hwy to Glassford Hill Rd	43,000	48,000	61,000	61,000
Glassford Hill Rd to Lake Valley Rd	33,000	36,000	51,000	51,000
Lake Valley Rd to Windsong Dr	38,000	42,000	58,000	58,000
Windsong Dr to Robert Rd	39,000	41,000	56,000	56,000
Robert Rd to Navajo Dr	34,000	42,000	58,000	58,000
Navajo Dr to Enterprise Pkwy	32,000	36,000	44,000	44,000
Enterprise Pkwy to Prescott Country Club Blvd/Fain Rd	30,000	37,000	44,000	44,000
Prescott Country Club Blvd/Fain Rd to Bradshaw Mountain Rd	35,000	42,000	50,000	50,000
Bradshaw Mountain Rd to Kachina Pl	27,000	40,000	37,000	37,000
Kachina Pl to SR 169	24,000	37,000	37,000	37,000
SR 169 to Main St	16,000	24,000	24,000	24,000

Table 4.2 compares intersection-level LOS and control delay - by intersection and by approach - across all alternatives. Despite higher corridor volumes under the Build alternatives, both Alternatives 1 and 2 improve overall Level of Service (LOS) on SR 69 due to added capacity and smoother flow, while parallel and cross streets also benefit from reduced congestion.

Table 4.2 Intersection-Level Delay and LOS For Each Alternative

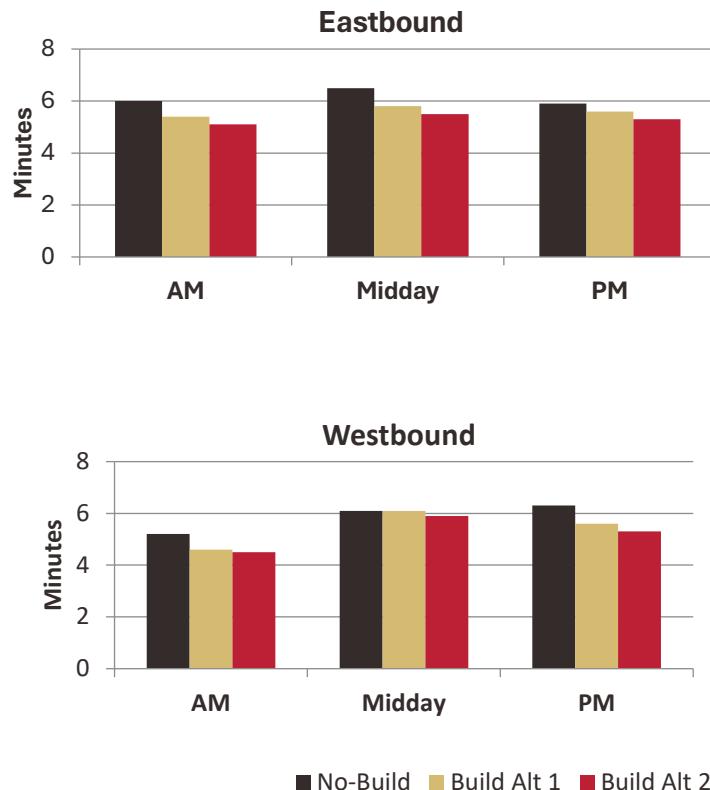
Int #	Intersections	Control Type	Approach	2022 Existing				2050 No Build				2050 Build Alt 1				2050 Build Alt 2											
				AM		Mid Day		PM		AM		Mid Day		PM		AM		Mid Day		PM		AM		Mid Day		PM	
				Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS		
1	Sheldon St	Signals	EB	15.2	B	21.1	C	24.3	C	14.4	B	20.5	C	24	C	13.4	B	16.5	B	22	C	13.4	B	16.5	B	22	C
			WB	19.4	B	23.7	C	28.5	C	20.9	C	24.5	C	31.5	C	6.7	A	25.3	C	13.7	B	6.3	A	24.8	C	13.5	B
			NB	36.8	D	37.6	D	43.5	D	40	D	39.8	D	45.1	D	56.2	E	28	C	55.7	E	56.2	E	28	C	55.7	E
			SB	25.1	C	21.4	C	23.4	C	28.2	C	23.8	C	25.5	C	47.5	D	22.3	C	39.5	D	47.5	D	22.3	C	39.5	D
			Total Int	20.1	C	22.3	C	25.6	C	21	C	23.3	C	27.4	C	19.5	B	21.5	C	26.3	C	19.3	B	21.3	C	26.2	C
2	Heather Heights	Signals	EB	5.5	A	7.3	A	7.9	A	6.4	A	8	A	8.8	A	5.7	A	8.3	A	8.7	A	5.8	A	9.2	A	8.6	A
			WB	3.9	A	4.3	A	2.5	A	4.5	A	5.5	A	2.4	A	3.2	A	2.9	A	6.8	A	3.1	A	3	A	6.4	A
			NB	62.5	E	60.8	E	59.1	E	60.5	E	60.7	E	59.5	E	53	D	53.2	D	51.8	D	53	D	53.2	D	51.8	D
			SB	62.9	E	61.3	E	58.4	E	60.9	E	61.3	E	58	E	53.3	D	53.7	D	50.7	D	53.3	D	53.7	D	50.7	D
			Total Int	6.2	A	8.9	A	9	A	6.9	A	9.7	A	9.5	A	5.6	A	8.3	A	10.8	B	5.6	A	8.8	A	10.6	B
3	Frontier Village Shopping Plaza DW	Signals	EB	7.3	A	16.8	B	8	A	9.3	A	15.8	B	8.6	A	4.4	A	8.1	A	6.1	A	4.4	A	8.2	A	6.1	A
			WB	5.4	A	6.4	A	15.9	B	5.6	A	7.1	A	17.2	B	6.4	A	8.7	A	9.4	A	7.3	A	8	A	8.2	A
			NB	60.6	E	59.7	E	58.4	E	60.6	E	59.4	E	58.4	E	53.1	D	51.8	D	50.9	D	53.1	D	51.8	D	50.9	D
			SB	0	A	0	A	66.9	E	0	A	0	A	66.9	E	0	A	0	A	59.3	E	0	A	0	A	59.3	E
			Total Int	9.8	A	17.5	B	14.9	B	10.6	B	17.3	B	15.7	B	8.9	A	13.5	B	10.8	B	9.4	A	13.3	B	10.3	B
4	Yavape Connector	Signals	EB	7	A	12.2	B	8.2	A	7.1	A	12.7	B	9.2	A	4.5	A	14.7	B	10.2	B	5.1	A	14.6	B	11.5	B
			WB	7.6	A	19.5	B	25.9	C	8.1	A	22.3	C	29.3	C	3.4	A	9.9	A	8.8	A	3.1	A	9.8	A	8.7	A
			NB	61.9	E	56.4	E	59.1	E	61.8	E	55.9	E	57.3	E	54.4	D	49.5	D	50.4	D	54.4	D	49.5	D	50.4	D
			SB	64	E	60.5	E	66.5	E	64.6	E	60.6	E	60.6	E	56.8	E	53.8	D	54.1	D	56.8	E	53.8	D	54.1	D
			Total Int	13.5	B	22.4	C	22.2	C	13.8	B	23.7	C	23.4	C	9.5	A	18.7	B	15.4	B	9.6	A	18.6	B	16.1	B
5	Holiday Dr	Signals	EB	16.3	B	9.1	A	12.1	B	13.2	B	5.6	A	5.6	A	7.1	A	8.6	A	8	A	5.1	A	8.6	A	9	A
			WB	10.2	B	14.3	B	11.7	B	8.5	A	12.6	B	10	A	2.8	A	6.1	A	6.3	A	2.8	A	6.3	A	7.1	A
			NB	67.1	E	66.4	E	64.1	E	69.4	E	66.8	E	64.4	E	61.8	E	56.9	E	59.6	E	61.8	E	56.9	E	59.6	E
			SB	65.6	E	61.8	E	63.6	E	63.3	E	60.4	E	63.7	E	57.9	E	54.5	D	54.1	D	57.9	E	54.5	D	54.1	D
			Total Int	13.6	B	14.5	B	14.4	B	11.4	B	11.9	B	10.1	B	5.5	A	10.2	B	9.7	A	4.7	A	10.2	B	10.6	B
6	Prescott Lakes Pkwy	Signals	EB	15.2	B	29.5	C	24.9	C	16.2	B	32.8	C	28.3	C	11.6	B	37.4	D	33.9	C	12.2	B	35.6	D	33.2	C
			WB	10	A	23.5	C	51.6	D	13.9	B	22	C	33.9	C	13.8	B	45.7	D	36.3	D	17.1	B	27.6	C	18	B
			NB	57.2	E	54.1	D	56.2	E	56.7	E	54.7	D	53.9	D	61	E	77	E	75.4	E	61	E	77	E	75.4	E
			SB	51.6	D	55.1	E	149.5	F	55.6	E	106.5	F	255.4	F	52	D	56.6	E	62	E	52	D	56.6	E	62	E
			Total Int	18	B	34.2	C	62.7	E	22.2	C	48.5	D	87.1	F	19.8	B	47.2	D	43	D	21.9	C	40	D	36.8	D
7	Gateway Rd (Green-T in Alternative 2)	Signals	EB	2	A	8.7	A	8.1	A	1.9	A	10	A	9.3	A	3.7	A	2	A	2.9	A	3	A	4.2	A	4.4	A

Table 4.2 Intersection-Level Delay and LOS For Each Alternative (Continued)

Int #	Intersections	Control Type	Approach	2022 Existing						2050 No Build						2050 Build Alt 1						2050 Build Alt 2					
				AM		Mid Day		PM		AM		Mid Day		PM		AM		Mid Day		PM		AM		Mid Day		PM	
				Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
8	Lee Blvd	Signals	EB	11.7	B	20	C	11.3	B	13.6	B	31.1	C	21.3	C	11.6	B	26.9	C	25.2	C	10.2	B	23.5	C	23.2	C
			WB	12.6	B	19.2	B	13.5	B	16.5	B	31.3	C	21	C	7.2	A	36.3	D	28.4	C	8.8	A	41.3	D	30.8	C
			NB	52.7	D	53.3	D	52.9	D	54.7	D	62.3	E	54.5	D	60.4	E	59.9	E	59.4	E	60.4	E	59.9	E	59.4	E
			SB	51.8	D	46.3	D	47.9	D	47.5	D	35.8	D	37.5	D	49	D	34.1	C	36.8	D	49	D	34.1	C	36.8	D
			Total Int	15.5	B	23.2	C	16.5	B	19.3	B	35.6	D	26.2	C	13.4	B	35.4	D	31.1	C	13.9	B	36.1	D	31	C
9	Walker Rd	Signals	EB	6.7	A	14.2	B	5.4	A	8.1	A	33.8	C	6.2	A	4.3	A	6.8	A	5.6	A	3.5	A	21.1	C	23.7	C
			WB	10.9	B	12.9	B	10.3	B	13	B	14.8	B	11.8	B	6.8	A	13.5	B	10	B	2	A	5.5	A	5	A
			NB	51.6	D	48.9	D	50	D	51.7	D	50.4	D	48.7	D	51.7	D	49.1	D	56.3	E	46.6	D	64.5	E	78.3	E
			SB	N/A						N/A						N/A						N/A					
			Total Int	11.9	B	20	C	13.5	B	13.9	B	30.4	C	14.7	B	8.3	A	16	B	13.6	B	4.8	A	22.2	C	25.1	C
10	Sunrise Blvd/Old Black Canyon Hwy (Thru-Cut in Alternative 2)	Signals	EB	7.9	A	10	B	13.9	B	10.3	B	11	B	16.6	B	3.8	A	11.2	B	14	A	3.9	A	11.6	B	13.1	B
			WB	7.2	A	5.9	A	18.5	B	7.1	A	7.8	A	21.9	C	3.1	A	3.7	A	4.8	A	2.4	A	6.7	A	3.9	A
			NB	54.7	D	60.6	E	60.7	E	55.2	E	60.3	E	60.3	E	58.1	E	48.5	D	48.7	D	53.8	D	32.3	C	48.9	D
			SB	51.6	D	64.8	E	65	E	51.4	D	64.9	E	65.3	E	51.5	D	53.2	D	53.9	D	52.8	D	33	C	51.9	D
			Total Int	10.9	B	11	B	18.1	B	11.6	B	12.4	B	20.9	C	7	A	9.7	A	12.2	B	6.5	A	10.3	B	11.3	B
11	Robin Dr	Signals	EB	4.9	A	3.6	A	3.2	A	6.2	A	4.4	A	3.8	A	3.7	A	2.5	A	3	A	2.5	A	3.3	A	3	A
			WB	5.9	A	2.7	A	19.3	B	8.7	A	2.2	A	21	C	2.4	A	1.6	A	1.3	A	2.5	A	2	A	1	A
			NB	N/A						N/A						N/A						N/A					
			SB	54.2	D	63.1	E	63.6	E	52.4	D	61.7	E	61.9	E	54.2	D	52.1	D	50.6	D	54.2	D	34.5	C	50.6	D
			Total Int	7.1	A	3.7	A	10.2	B	9.9	A	4.1	A	11.7	B	3.6	A	2.3	A	2.6	A	3.2	A	2.9	A	2.5	A
12	Ramada Dr (Green-T in Alternative 2)	Signals	EB	5.7	A	5	A	2.7	A	7.1	A	6.8	A	3	A	2	A	8.4	A	9.9	A	0.3	A	0.4	A	1.3	A
			WB	2.6	A	2.4	A	10.9	B	3.1	A	2.5	A	7.3	A	4.6	A	7.5	A	8.1	A	1.8	A	3.7	A	0.6	A
			NB	N/A						N/A						N/A						N/A					
			SB	55.6	E	63.7	E	63.1	E	55.6	E	61.8	E	63.1	E	54.1	D	49.4	D	50.6	D	45.9	D	28.3	C	44.4	D
			Total Int	4.6	A	4.6	A	6.4	A	5.5	A	5.8	A	5	A	4.4	A	8.6	A	9.4	A	2	A	2.2	A	1.3	A
13	Diamond Dr (Green-T in Alternative 2)	Signals	EB	2.2	A	2.5	A	4.6	A	2.9	A	8.3	A	5.5	A	2.6	A	4.9	A	9.4	A	1	A	0.5	A	1.3	A
			WB	4.4	A	5	A	13	B	8.1	A	3.9	A	11.5	B	1.1	A	0.5	A	0.7	A	1.4	A	10.3	B	0.8	A
			NB	N/A						N/A						N/A						N/A					
			SB	54.8	D	64	E	62.3	E	52.2	D	62.1	E	62.4	E	53	D	49.6	D	49.9	D	48.6	D	28.1	C	45.7	D
			Total Int	5.7	A	4.5	A	9	A	8.3	A	6.9	A	9.1	A	3.8	A	3.5	A	6.5	A	3.2	A	5.4	A	1.8	A

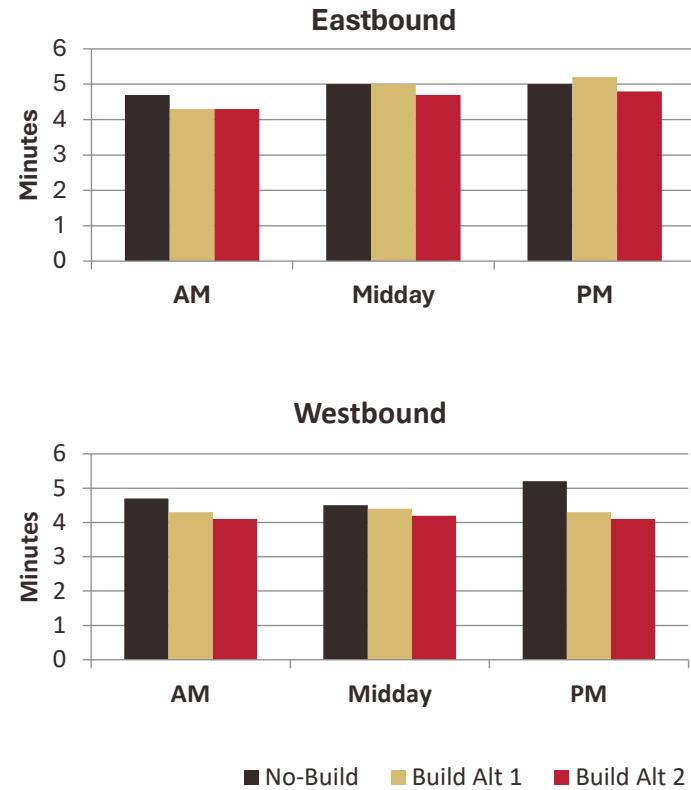
Table 4.2 Intersection-Level Delay and LOS For Each Alternative (Continued)

Int #	Intersections	Control Type	Approach	2022 Existing						2050 No Build						2050 Build Alt 1						2050 Build Alt 2					
				AM		Mid Day		PM		AM		Mid Day		PM		AM		Mid Day		PM		AM		Mid Day		PM	
				Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS
16	Prescott E Hwy (Median U-Turns in Alternative 2)	Signals	EB	6.4	A	11	B	17.3	B	15.4	B	16.7	B	26.3	C	13.2	B	25.4	C	25	C	10.1	B	12.6	B	4.9	A
			WB	5.5	A	7.1	A	11.4	B	9.9	A	18.8	B	28.2	C	24.6	C	26.3	C	10.5	B	7.5	A	3	A	3.7	A
			NB	48.3	D	65	E	63.7	E	34.6	C	44.9	D	43.7	D	37.6	D	46	D	44.4	D	18.5	B	26.3	C	38.4	D
			SB	51.5	D	54.3	D	56.5	E	218	F	314.7	F	356.8	F	58.9	E	62.2	E	73.7	E	29.7	C	39.5	D	65.3	E
			Total Int	13.6	B	16.6	B	21.3	C	75.3	E	84.2	F	99.4	F	25.3	C	30.2	C	24.8	C	11.4	B	11.4	B	10.7	B
17	Glassford Hill Rd (Median U-Turns in Alternative 2)	Signals	EB	36.8	D	40.1	D	31.8	C	35.9	D	40.1	D	40.8	D	31.3	C	28.9	C	45.2	D	32.7	C	42.7	D	45.5	D
			WB	14.8	B	25	C	50	D	16.2	B	26.8	C	52.2	D	19.3	B	27.9	C	41.4	D	31.1	C	22.9	C	41.8	D
			NB	52.4	D	60.7	E	63.6	E	52.6	D	61.7	E	69	E	58.2	E	128.7	F	129.2	F	44.1	D	89.9	F	129.2	F
			SB	45.4	D	49.6	D	47.9	D	46.1	D	53	D	53	D	64.2	E	65.3	E	73.5	E	51.2	D	85.7	F	73.5	E
			Total Int	29.9	C	38.2	D	43.2	D	31.1	C	40	D	49.1	D	34	C	42.4	D	55.5	E	36.2	D	47.3	D	55.7	E
18	Lake Valley Rd (Median U-Turns in Alternative 2)	Signals	EB	16.8	B	16.2	B	21.1	C	13.7	B	16.2	B	22.7	C	12	B	16.3	B	19.8	B	13.3	B	16.3	B	19.4	B
			WB	12.7	B	37.8	D	32	C	13.2	B	37.1	D	34.7	C	7.7	A	8.6	A	8.7	A	11.7	B	23.5	C	46	D
			NB	53.4	D	58.1	E	58.7	E	53.4	D	57.9	E	58.7	E	46	D	47.9	D	53.3	D	38.1	D	41.7	D	52.7	D
			SB	49.3	D	48.6	D	47.2	D	49.3	D	48.4	D	46.9	D	43.7	D	48.4	D	43.9	D	37.2	D	39.5	D	44.8	D
			Total Int	18.8	B	31	C	31.6	C	17.9	B	30.5	C	33.1	C	13.4	B	18.2	B	21.2	C	15.2	B	23	C	34.9	C
19	Windsong Dr (Median U-Turns in Alternative 2)	Signals	EB	21.7	C	17.6	B	11.2	B	20.9	C	15.8	B	10.7	B	8.3	A	9.8	A	11.2	B	1.5	A	4.9	A	5.1	A
			WB	7	A	23.3	C	25.9	C	7.3	A	20.9	C	24.2	C	6.1	A	8.7	A	7.1	A	2.4	A	7.5	A	6.4	A
			NB	48.5	D	46.6	D	44.7	D	50.4	D	49.8	D	47.8	D	54.4	D	43.7	D	39.1	D	34.2	C	32.5	C	34.9	C
			SB	54.5	D	66.5	E	65.7	E	54.6	D	64	E	63.7	E	55.1	E	58	E	56.8	E	42.2	D	50.2	D	59.1	E
			Total Int	16.5	B	25.8	C	23.4	C	15.7	B	22.7	C	21.4	C	10.2	B	13.1	B	12.9	B	4.5	A	9.2	A	9.3	A
20	Robert Rd (Median U-Turns in Alternative 2)	Signals	EB	12.5	B	20.1	C	15.6	B	11.4	B	19.4	B	15.5	B	15.2	B	20.4	C	20.4	C	17.6	B	13.1	B	15.9	B
			WB	5.1	A	16	B	16.3	B	5.7	A	14	B	14.4	B	10.3	B	10.9	B	9.8	A	19	B	20.6	C	22.2	C
			NB	47.5	D	55.8	E	54.8	D	48.3	D	58.2	E	56.1	E	35.8	D	46.5	D	43.9	D	29.1	C	42.6	D	43.9	D
			SB	49.7	D	57.2	E	57.7	E	50	D	57.7	E	58	E	53	D	48.2	D	49.5	D	50	D	43.3	D	49.5	D
			Total Int	14.9	B	24.3	C	21.2	C	14.1	B	22.8	C	20.1	C	18	B	20.7	C	19.7	B	22.8	C	20.2	C	22.1	C
21	Navajo Dr (Median U-Turns in Alternative 2)	Signals	EB	17.4	B	13.8	B	18.2	B	16.6	B	14.3	B	18.6	B	14.3	B	13.8	B	18.8	B	2.4	A	1.4	A	2.2	A
			WB	15.9	B	16	B	18.9	B	15.3	B	14.5	B	17.2	B	17.5	B	17.6	B	21.6	C	7.3	A	3.9	A	3.1	A
			NB	45.6	D	53.8	D	52.6	D	47.5	D	57.5	E	56.4	E	42.8	D	45.9	D	44.8	D	31.3	C	40.8	D	44.8	D
			SB	47.3	D	58.5	E	57.9	E	47.8	D	59.2	E	59.2	E	42.8	D	46.5	D	46.3	D	34.2	C	43.5	D	49.2	D
			Total Int </																								


Table 4.2 Intersection-Level Delay and LOS For Each Alternative (Continued)

Int #	Intersections	Control Type	Approach	2022 Existing				2050 No Build				2050 Build Alt 1				2050 Build Alt 2									
				AM		Mid Day		PM		AM		Mid Day		PM		AM		Mid Day		PM					
				Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS	Delay	LOS		
24	Bradshaw Mountain Rd	Signals	EB	11.4	B	11.3	B	14.2	B	17.3	B	15.3	B	18.4	B	19.1	B	18.3	B	27	C	19.1	B	18.3	B
			WB	13.7	B	11.8	B	15.5	B	68	E	18.3	B	72.1	E	10.5	B	9.8	A	24.2	C	10.5	B	9.8	A
			NB	29.4	C	31.9	C	35	C	34.7	C	33.2	C	34.2	C	124	F	70.1	E	60	E	124	F	70.1	E
			SB	28.2	C	30.7	C	38.2	D	27.8	C	31.9	C	37	D	54.2	D	60.8	E	74.9	E	54.2	D	60.8	E
			Total Int	15.2	B	13.8	B	16.6	B	45.3	D	18.7	B	45.2	D	23	C	20.1	C	29.1	C	23	C	20.1	C
25	Kachina Pl	Signals	EB	12.2	B	13.3	B	11.7	B	19.1	B	30.4	C	35.3	D	15.6	B	11.3	B	9.1	A	15.6	B	11.3	B
			WB	14.1	B	12.1	B	10.9	B	41.1	D	16.7	B	18.5	B	14.8	B	12.7	B	11.1	B	14.8	B	12.7	B
			NB	53.6	D	36.2	D	36.9	D	103.5	F	56	E	38.1	D	78.8	E	68.7	E	78.9	E	78.8	E	68.7	E
			SB	27.2	C	27.6	C	28.5	C	27.6	C	28.7	C	28.5	C	46.5	D	47.4	D	57.3	E	46.5	D	47.4	D
			Total Int	17.2	B	14.7	B	12.7	B	37.6	D	26.6	C	28.2	C	20.6	C	16.2	B	13.4	B	20.6	C	16.2	B
26	SR 169	Signals/RBT	EB	20	B	17.1	B	21	C	101.7	F	60.4	E	124.4	F	3.1	A	3.7	A	4	A	3.1	A	3.7	A
			WB	21.9	C	20.1	C	24.8	C	50.9	D	35.1	D	39.9	D	2.9	A	2.6	A	2.9	A	2.9	A	2.6	A
			NB	36.3	D	36.4	D	38.5	D	39.1	D	41.2	D	39.5	D	7.6	A	16.8	C	163.9	F	7.6	A	16.8	C
			SB	38.8	D	36.9	D	40.3	D	103.1	F	75.7	E	124	F	64.2	F	16.3	C	45.9	E	64.2	F	16.3	C
			Total Int	24.5	C	21.5	C	26.1	C	82.8	F	55.3	E	99.7	F	15.3	C	5.7	A	14.2	B	15.3	C	5.7	A
27	Main St	Signals	EB	9.3	A	11.6	B	7.6	A	10.6	B	13.5	B	8.6	A	14	B	14.8	B	11.5	B	14	B	14.8	B
			WB	13.3	B	11.2	B	11.7	B	16.1	B	14.9	B	14.4	B	13.2	B	13.3	B	12.4	B	13.2	B	13.3	B
			NB	32.9	C	37	D	35.1	D	35.9	D	37.9	D	36.6	D	60.5	E	56.8	E	64	E	60.5	E	56.8	E
			SB	33.5	C	37.3	D	35.4	D	36.8	D	38.3	D	37.1	D	61.7	E	57.4	E	64.8	E	61.7	E	57.4	E
			Total Int	14	B	13.4	B	10.5	B	16.3	B	16.1	B	12	B	20	C	17.8	B	14.4	B	20	C	17.8	B

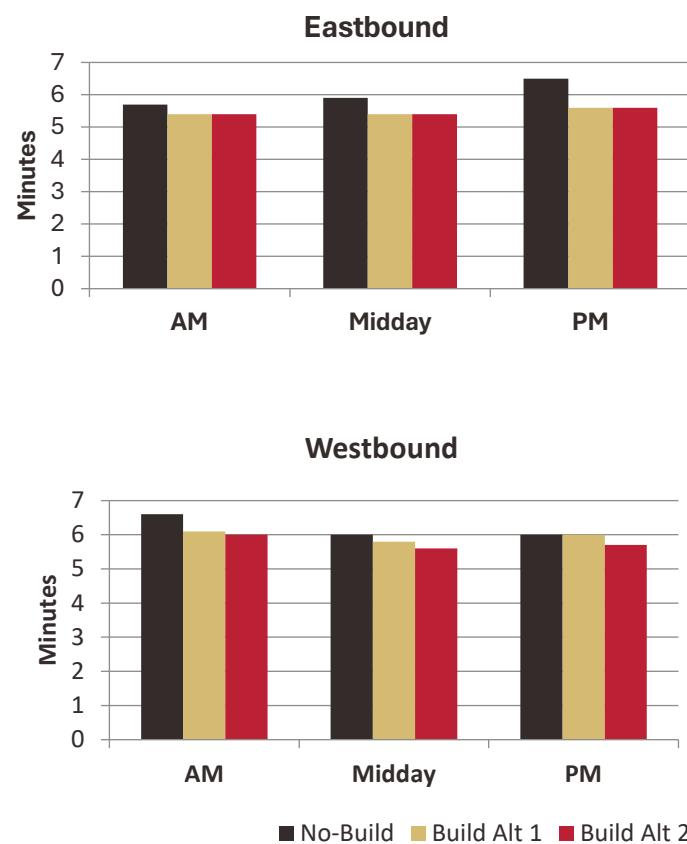
Each alternative was also evaluated against key criteria, including corridor travel time, intersection delay, and anticipated safety benefits. The following subsection summarizes travel-time savings along the corridor.


SR 89 to Walker Road

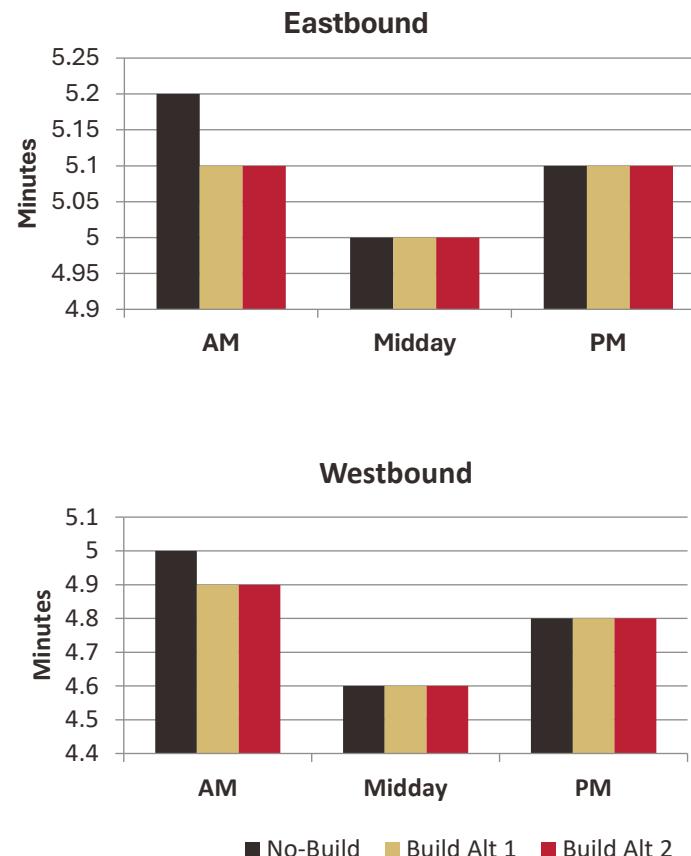
- **Prescott Lakes Parkway** intersection operates at LOS E/F during midday and PM peaks; Build Alternatives 1 and 2 improve conditions to LOS D, but PM congestion persists.
- **Alternative 1 & 2:** Reduces corridor travel times and intersection delay, even with higher 2050 traffic volumes.

Walker Road to Sundog Ranch Road

- **Sundog Ranch Road** intersection operates at LOS E in the PM under No-Build; Alternative 2 offers the greatest relief but still approaches LOS D/E during PM peaks.
- **Alternative 2:** Provides the most consistent travel time reduction and intersection delay improvement.


Sundog Ranch Road to Navajo Drive

- **Prescott East Highway and Valley View Drive** intersections operate at LOS E/F under No-Build, particularly westbound PM.
- **Alternative 1:** Reduces travel times but does not eliminate westbound PM delay.
- **Alternative 2** with Median U-Turn treatments, improves intersection operations to LOS D in AM and midday but some LOS E conditions remain westbound PM.


Navajo Drive to Fain Road

- **Glassford Hill Road** intersection remains a major bottleneck, operating at **LOS E/F** AM and PM under No-Build.
- **Alternative 2:** Delivers meaningful delay reduction, but PM conditions remain > LOS D without additional intersection capacity enhancements.

East of Fain Road

- Intersections east of Fain Road generally operate at LOS D or better in all scenarios.
- Corridor travel times remain nearly identical for No-Build and Build scenarios, indicating limited benefit from major improvements in this segment.
- **Alternatives 1 & 2 offer slight reductions in intersection delay.**

Summary of Findings

Performance of Alternatives:

- **Alternative 1:** Modest travel time reductions (~0.3-0.5 minutes per trip) and some relief at major intersections from added turn lanes.
- **Alternative 2:** Greatest overall improvement, significantly reducing delay at key intersections - especially between Sundog Ranch Road and Fain Road - with consistent savings across AM, midday, and PM periods.

Safety Benefits

- Innovative intersections (Green-T and Thru-Cut) reduce conflict points and improve safety.

Multimodal Enhancements

- Both Build alternatives add continuous sidewalks/multiuse paths, improving pedestrian and bicycle connectivity.
- Raised medians and upgraded crossings enhance safety.

Cost Considerations:

- **Median U-Turns and Thru-Cuts** can sometimes achieve delay reductions comparable to full intersection widening at lower cost. **For SR 69 in the Prescott Valley area**, corridor analysis indicated that median U-turns treatments would provide **smaller benefits at higher cost** than alternative 1; accordingly, they **were not advanced** for further evaluation.

Phasing Recommendations:

- A phased implementation plan is recommended, prioritizing high-delay segments (Sundog Ranch Road to Glassford Hill) in near- and mid-term investments.
- Lower-priority segments, such as east of Fain Road, can be addressed in later phases due to limited congestion.

5. Preferred Improvement Recommendations

Phasing Improvements

The SR 69 Corridor Master Plan recommends a phased approach to implement improvements in a cost-effective, logical sequence. This strategy prioritizes critical safety needs and quick wins first, followed by capacity expansion and multimodal connectivity, with major investments and system optimization occurring later as demand grows. These improvements are:

SHORT-TERM RECOMMENDATIONS	MID-TERM RECOMMENDATIONS	LONG-TERM RECOMMENDATIONS
<ul style="list-style-type: none">Address critical safety concerns and intersection bottlenecks.Deliver low-cost, high-benefit projects to show early progress.Enhance multimodal connectivity in key locations.	<ul style="list-style-type: none">Add capacity in highest-delay segments to stay ahead of growth.Complete missing median segments for access management and safety.Expand multimodal network for continuous corridor coverage.	<ul style="list-style-type: none">Deliver corridor-wide capacity and multimodal continuity.Implement future-proofing measures for 2050+ traffic volumes.Evaluate additional intersection and technology upgrades.

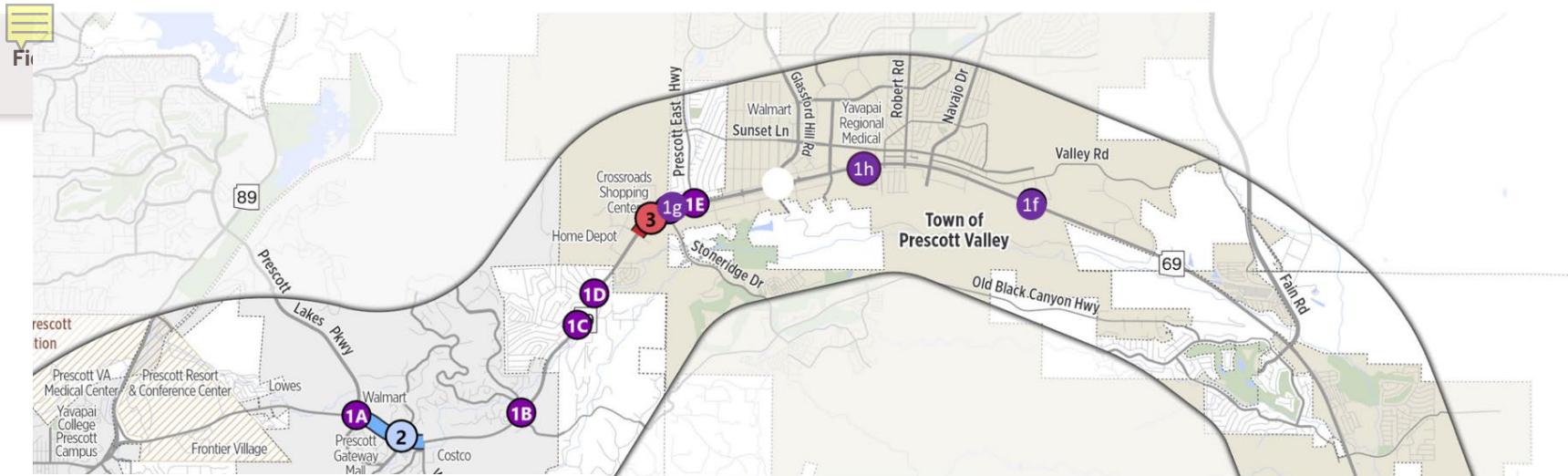

Short-Term Recommendations

Table 5.1. Recommended Short-Term Improvements

ID	Location	Improvement*	Purpose	Cost**
1a	SR 69 / Prescott Lakes Parkway	Add 2nd WB Right-Turn Lane	Reduce right-turn queueing and improve intersection capacity. Preserve Walmart's exclusive right-turn lane.	\$14.25M
1b	SR 69 / Prescott Lakes Parkway	Add 2nd WB Left-Turn Lane	Improve left-turn storage and reduce spillback into through lanes	
1c	SR 69 / Old Black Canyon Hwy	Thru-Cut Intersection	Remove side-street through movements to reduce signal phases and delay	
1d	SR 69 / Ramada Drive	Continuous Green-T Intersection	Channelize left turns, reduce conflict points, and increase through green time	
1e	SR 69 / Diamond Drive	Continuous Green-T Intersection	Same as above – safety and delay reduction	
1f	SR 69 / Glassford Hill Road	Extend EB Left-Turn Storage	Prevent left-turn queues from blocking through lanes	
1g	SR 69 / Mendecino Drive	Install New Traffic Signal	Improve safety and provide controlled access	
1h	SR 69 / Stoneridge Drive	Add 2nd EB Left-Turn Lane	Increase capacity for eastbound left-turning vehicles	

* Directional references in this table are based on cardinal directions.

** Cost Assumptions: No bridges/major structures, minimal walls, minimal drainage improvements, and minimal earthwork. Does not include costs for new r/w or utility relocations. Costs are representative of today's dollars.

Short-Term Projects: 1, 2, 3, 7

1a SR 69/Prescott Lakes Pkwy: 2nd WB Right Turn Lane
 SR 69/Prescott Lakes Pkwy: 2nd WB Left Turn Lane
 SR 69/Old Black Canyon Hwy: Thru CUT
 SR 69/Ramada Dr: Continuous Green T
 to SR 69/Diamond Dr: Continuous Green T
 SR 69/Glassford Hill Rd: Extend EB Left Turn Storage
 SR 69/Mendicino Dr: New Traffic Signal
 SR 69/Stoneridge Dr: 2nd EB Left Turn Lane
 SR 69/Stoneridge Dr: 2nd WB Left Turn Lane
 1h SR 69/Lake Valley Rd: 2nd EB Left Turn Lane

\$14.25M

2 Prescott Lake Pkwy to Walker Rd:
 • Lee Blvd to Walker Rd: WB Third Lane (Widening)
 • Prescott Lake Pkwy to Walker Rd: Median
 • SR 69/Gateway Rd: Continuous Green T

\$5M

3 Sundog Ranch Rd to Stoneridge Dr:
 Sundog to Great Western Drive: MUP Northside
 Sundog to Stoneridge: MUP Southside

\$1.25M

7 One Hope Christian Church Driveway to Main St: MUP on Northside

\$750K

Prescott
National
Forest

Green-T Intersections – Where SR 69 traffic keeps moving while streamlining left turns from side streets.

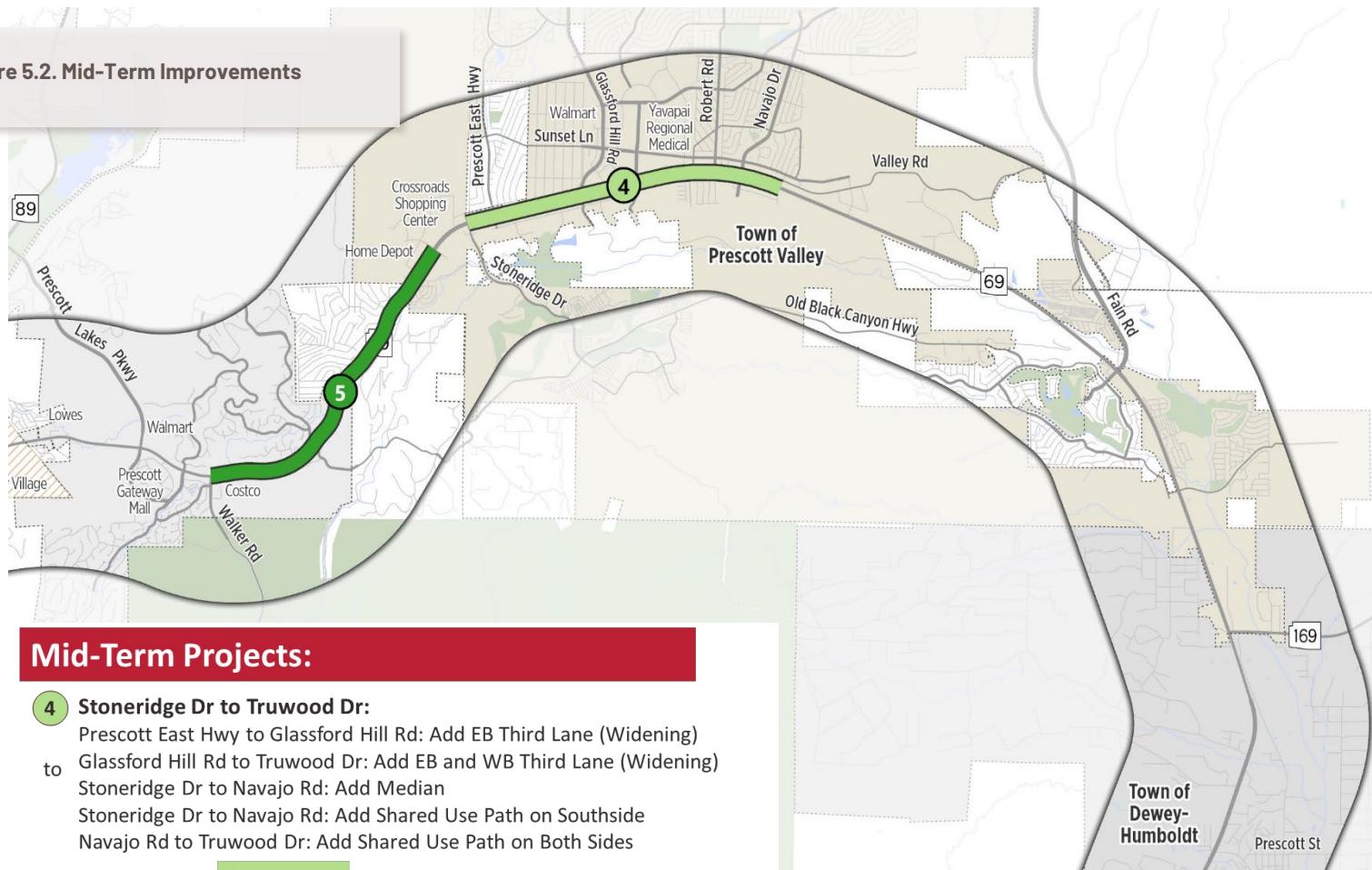
Thru-Cuts - Means drivers on the side street wishing to cross SR 69 will need to make a right or left turn onto SR 69 and then make a U-turn at a designated location.

Median U-Turns – Replace left turns at signals with a safer U-turn just beyond the intersection.

Table 5.1. Recommended Short-Term Improvements (Continued)

ID	Location	Improvement*	Purpose	Cost**
2a	Lee Blvd to Walker Road	Add 3 rd WB Travel Lane	Add capacity and reduce westbound congestion	\$5M
2b**	Prescott Lake Parkway to Lee Boulevard	Raised Median	Improve access management and corridor safety	
2c	SR 69/Gateway Road	Install Continuous Green T	Improve intersection efficiency and reduce delay	
3a	Sundog to Great Western Drive	Add Multi-Use Path on Northside	Fill gaps in pedestrian and bicycle network	\$1.25M
3b	Sundog to Stoneridge	Add Multi-Use Path on Southside	Fill gaps in pedestrian and bicycle network	
7	One Hope Christian Church Driveway to Main Street	Add Multi-Use Path on Northside	Improve multimodal connectivity	\$750K
TOTAL COST				\$21.25M

Mid-Term Recommendations


Table 5.2. Recommended Mid-Term Improvements

ID	Location	Improvement*	Purpose	Cost***
4a	Prescott East Hwy to Glassford Hill Road	Add EB Third Lane	Increase corridor capacity and reduce travel times	\$39.75M
4b	Glassford Hill Road to Truwood Drive	Add EB and WB Third Lanes	Add bidirectional capacity in highest-delay segment	
4c	Stoneridge Drive to Navajo Road	Construct Median	Improve safety through access control	
4d	Stoneridge Drive to Navajo Road	Add Multi-Use Path on Southside	Provide safe pedestrian/bike facilities	
4e	Navajo Road to Truwood Drive	Add Multi-Use Path (both sides)	Complete multimodal network	
5a	Walker Road to Sundog Ranch Road	Signal Retiming & Optimization	Maximize benefits of widening and medians	\$33M
5b	Walker Road to Old Black Canyon Hwy	Driveway Consolidation / Turn Restrictions	Support median function and improve safety	
5c	Walker Road to Sundog Ranch Road	Add EB Third Lane	Increase corridor capacity and reduce travel times	
TOTAL COST				\$72.75M

* Directional references in this table are based on cardinal directions.

** Cost Assumptions: No bridges/major structures, minimal walls, minimal drainage improvements, and minimal earthwork. Does not include costs for new r/w or utility relocations. Costs are representative of 2025 dollars.

Figure 5.2. Mid-Term Improvements

Mid-Term Projects:

4 Stoneridge Dr to Truwood Dr:

- Prescott East Hwy to Glassford Hill Rd: Add EB Third Lane (Widening)
- to Glassford Hill Rd to Truwood Dr: Add EB and WB Third Lane (Widening)
- Stoneridge Dr to Navajo Rd: Add Median
- Stoneridge Dr to Navajo Rd: Add Shared Use Path on Southside
- Navajo Rd to Truwood Dr: Add Shared Use Path on Both Sides

\$39.75M

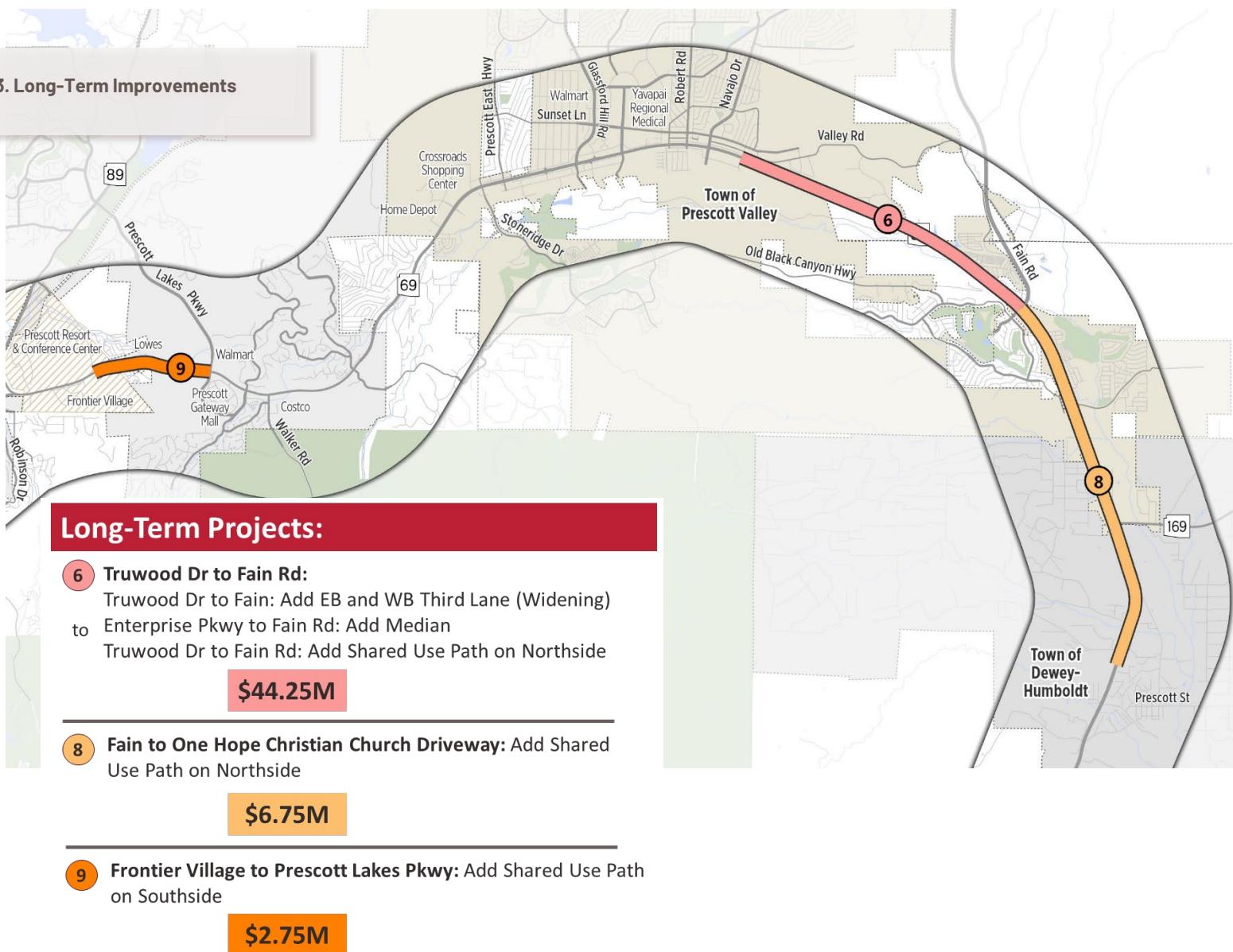
5 Walker Rd to Sundog Ranch Rd:

- Walker Rd to Sundog Ranch Rd: Add EB and WB Third Lane (Widening)
- Walker Rd to Old Black Canyon Hwy: Add Median
- Walker Rd to Sundog Ranch Rd: Add Shared Use Path on Southside

\$33M

Long-Term Recommendations

Table 5.3. Recommended Long-Term Improvements


ID	Location	Improvement*	Purpose	Cost**
6a	Truwood Drive to Fain Road	Add EB and WB Third Lanes	Complete corridor capacity build-out	\$44.25M
6b	Enterprise Parkway to Fain Road	Construct Median	Enhance safety and manage access	
6c	Truwood Drive to Fain Road	Complete Multi-Use Path on Northside	Finalize continuous pedestrian/bike connection	
8	Fain Road to One Hope Christian Church Driveway	Complete Multi-Use Path on Northside	Fill final gap for multimodal continuity	\$6.75M
9	Frontier Village to Prescott Lakes Parkway	Add Multi-Use Path on Southside	Extend multimodal facilities to serve key destinations	\$2.75M
TOTAL COST				\$53.75M

* Directional references in this table are based on cardinal directions.

** Cost Assumptions: No bridges/major structures, minimal walls, minimal drainage improvements, and minimal earthwork. Does not include costs for new r/w or utility relocations. Costs are representative of today's dollars.

As part of the preferred alternative, a desktop-level environmental review was also completed to identify potential high-level impacts and constraints and the findings are presented in Appendix D.

Figure 5.3. Long-Term Improvements

5. Implementation Recommendations

Implementation Considerations

Successful implementation of the SR 69 Corridor Master Plan will require phased, coordinated action among multiple partners. Key considerations include:

PHASED DELIVERY

Build public confidence and demonstrate progress while buying time to secure funding for larger, higher-cost projects.

► **Action:** Sequence projects to deliver **early wins** (safety, multimodal, intersection upgrades) while preparing design and ROW for future widening projects.

DESIGN CONSISTENCY

Ensure a cohesive user experience, simplify maintenance, and reduce design rework8 across multiple phases.

► **Action:** Establish corridor-wide standards for lane widths, median treatments, MUPs, signal design, and intersection geometry.

PARTNERSHIP DEVELOPMENT

Leverage for funding, avoid siloed projects, and coordinate construction schedules to minimize disruption.

► **Action:** Formalize partnerships with ADOT, Prescott Valley, Prescott, Yavapai County, and developers. Use **IGAs or cost-sharing agreements** where appropriate.

RISK MANAGEMENT

Improve predictability, keep projects on schedule, and provide transparency to decision-makers.

► **Action:** Maintain a live **risk register** identifying ROW challenges, cost escalation, utility conflicts, and schedule constraints. Update regularly through design.

RIGHT-OF-WAY & UTILITY COORDINATION

Avoid costly delays and change orders once construction is underway.

► **Action:** Begin ROW acquisition and utility coordination during preliminary design. Identify relocations, easements, and conflicts early.

STAKEHOLDER & PUBLIC ENGAGEMENT

Minimize surprises, build buy-in early, and allow agencies to adjust project scope/phasing to reflect community feedback and event schedules

► **Action:** Build a phased engagement plan with touchpoints at design milestones. Include targeted outreach to emergency services, businesses, and property owners.

TECHNOLOGY & ITS INTEGRATION

Improve traffic flow, reduce crashes, and future-proof the corridor.

► **Action:** Plan for adaptive signal control, real-time traveler info, and infrastructure to support connected/autonomous vehicles.

► **Action:** Conduct an ITS study from SR 89A to Sundog Ranch Rd and from Truwood Drive to SR 169.

PERFORMANCE MONITORING

Demonstrates return of investment of improvements, builds trust with funders, and informs adjustments for future phases.

► **Action:** Establish a baseline of corridor travel times, safety data, and mode share before implementation. Collect post-construction data to measure outcomes.

Funding Opportunities

Implementing the SR 69 Corridor Master Plan will require layered funding strategies that leverage federal, state, regional, and local resources. Each phase of improvements presents unique opportunities to align with specific funding programs. The table below summarizes potential funding sources, identifies eligible project types, and notes local match expectations to guide programming and grant applications. This matrix can serve as a roadmap for advancing priority projects into design, right-of-way, and construction as funding windows open.

Table 6.1. Potential Funding Options

Phase	Funding Source	Eligible Project Types	Local Match	Notes / Opportunities
Short-Term	HSIP (Highway Safety Improvement Program)	Raised medians, turn lane additions, signal upgrades, Thru-Cuts, Green-Ts	10%	Prioritize projects addressing documented crash patterns (Prescott Lakes Pkwy, Glassford Hill, Old Black Canyon Hwy)
	CMAQ (Congestion Mitigation & Air Quality)	Continuous Green-Ts, multi-use path segments, signal optimization	5-20%	Projects must demonstrate emissions reductions; good fit for intersection efficiency and multimodal connectivity
	STBG (Surface Transportation Block Grant)	WB third lane, intersection turn lanes, multi-use path construction	5.7-20%	Flexible funding for roadway and multimodal projects
	Local Funds / Developer Contributions	Driveway consolidations, turn restrictions, signal installations	Negotiated	Leverage adjacent development to cost-share localized access improvements
Mid-Term	STBG / Regional TIP	EB/WB lane additions, median build-out, larger multimodal segments	5.7-20%	Coordinate with MAG/CYMPPO programming cycles
	State Construction Program (ADOT 5-Year Plan)	Major capacity projects	Varies	Advocate for corridor widening inclusion in statewide program
	CMAQ	Signal retiming, access management improvements	5-20%	Eligible if demonstrating air quality benefits
Long-Term	RAISE / INFRA Grants	Full corridor widening (Truwood to Fain), major innovative intersections	20% (typical)	Strong candidate if paired with safety, freight mobility, or economic development benefits
	SS4A (Safe Streets & Roads for All)	Corridor-wide safety program (MUTs, medians, crossings)	0-20%	Supports systemic safety countermeasures and Complete Streets elements
	Future Regional Sales Tax or Bond Program	Multimodal buildout, adaptive signal control, technology upgrades	Local match determined by program	Consider as part of long-range regional funding strategy